Cargando…

The effect of prions on cellular metabolism: The metabolic impact of the [RNQ(+)] prion and potential role of native Rnq1p

Within the field of amyloid and prion disease there is a need for a more comprehensive understanding of the fundamentals of disease biology. In order to facilitate the progression treatment and underpin comprehension of toxicity, fundamental understanding of the disruption to normal cellular biochem...

Descripción completa

Detalles Bibliográficos
Autores principales: Howell-Bray, Tyler, Byrne, Lee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Journal Experts 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002837/
https://www.ncbi.nlm.nih.gov/pubmed/36909567
http://dx.doi.org/10.21203/rs.3.rs-2511186/v1
Descripción
Sumario:Within the field of amyloid and prion disease there is a need for a more comprehensive understanding of the fundamentals of disease biology. In order to facilitate the progression treatment and underpin comprehension of toxicity, fundamental understanding of the disruption to normal cellular biochemistry and trafficking is needed. Here, by removing the complex biochemistry of the brain, we have utilised known prion forming strains of Saccharomyces cerevisiae carrying different conformational variants of the Rnq1p to obtain Liquid Chromatography-Mass Spectrometry (LC-MS) metabolic profiles and identify key perturbations of prion presence. These studies reveal that prion containing [RNQ(+)] cells display a significant reduction in amino acid biosynthesis and distinct perturbations in sphingolipid metabolism, with significant downregulation in metabolites within these pathways. Moreover, that native Rnq1p appears to downregulate ubiquinone biosynthesis pathways within cells, suggesting that Rnq1p may play a lipid/mevalonate-based cytoprotective role as a regulator of ubiquinone production. These findings contribute to the understanding of how prion proteins interact in vivo in both their prion and non-prion confirmations and indicate potential targets for the mitigation of these effects. We demonstrate specific sphingolipid centred metabolic disruptions due to prion presence and give insight into a potential cytoprotective role of the native Rnq1 protein. This provides evidence of metabolic similarities between yeast and mammalian cells as a consequence of prion presence and establishes the application of metabolomics as a tool to investigate prion/amyloid-based phenomena.