Cargando…
Stabl: sparse and reliable biomarker discovery in predictive modeling of high-dimensional omic data
High-content omic technologies coupled with sparsity-promoting regularization methods (SRM) have transformed the biomarker discovery process. However, the translation of computational results into a clinical use-case scenario remains challenging. A rate-limiting step is the rigorous selection of rel...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002850/ https://www.ncbi.nlm.nih.gov/pubmed/36909508 http://dx.doi.org/10.21203/rs.3.rs-2609859/v1 |
_version_ | 1784904474456752128 |
---|---|
author | Hédou, Julien Marić, Ivana Bellan, Grégoire Einhaus, Jakob Gaudillière, Dyani K. Ladant, Francois-Xavier Verdonk, Franck Stelzer, Ina A. Feyaerts, Dorien Tsai, Amy S. Ganio, Edward A. Sabayev, Maximilian Gillard, Joshua Bonham, Thomas A. Sato, Masaki Diop, Maïgane Angst, Martin S. Stevenson, David Aghaeepour, Nima Montanari, Andrea Gaudillière, Brice |
author_facet | Hédou, Julien Marić, Ivana Bellan, Grégoire Einhaus, Jakob Gaudillière, Dyani K. Ladant, Francois-Xavier Verdonk, Franck Stelzer, Ina A. Feyaerts, Dorien Tsai, Amy S. Ganio, Edward A. Sabayev, Maximilian Gillard, Joshua Bonham, Thomas A. Sato, Masaki Diop, Maïgane Angst, Martin S. Stevenson, David Aghaeepour, Nima Montanari, Andrea Gaudillière, Brice |
author_sort | Hédou, Julien |
collection | PubMed |
description | High-content omic technologies coupled with sparsity-promoting regularization methods (SRM) have transformed the biomarker discovery process. However, the translation of computational results into a clinical use-case scenario remains challenging. A rate-limiting step is the rigorous selection of reliable biomarker candidates among a host of biological features included in multivariate models. We propose Stabl, a machine learning framework that unifies the biomarker discovery process with multivariate predictive modeling of clinical outcomes by selecting a sparse and reliable set of biomarkers. Evaluation of Stabl on synthetic datasets and four independent clinical studies demonstrates improved biomarker sparsity and reliability compared to commonly used SRMs at similar predictive performance. Stabl readily extends to double- and triple-omics integration tasks and identifies a sparser and more reliable set of biomarkers than those selected by state-of-the-art early- and late-fusion SRMs, thereby facilitating the biological interpretation and clinical translation of complex multi-omic predictive models. The complete package for Stabl is available online at https://github.com/gregbellan/Stabl. |
format | Online Article Text |
id | pubmed-10002850 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Journal Experts |
record_format | MEDLINE/PubMed |
spelling | pubmed-100028502023-03-11 Stabl: sparse and reliable biomarker discovery in predictive modeling of high-dimensional omic data Hédou, Julien Marić, Ivana Bellan, Grégoire Einhaus, Jakob Gaudillière, Dyani K. Ladant, Francois-Xavier Verdonk, Franck Stelzer, Ina A. Feyaerts, Dorien Tsai, Amy S. Ganio, Edward A. Sabayev, Maximilian Gillard, Joshua Bonham, Thomas A. Sato, Masaki Diop, Maïgane Angst, Martin S. Stevenson, David Aghaeepour, Nima Montanari, Andrea Gaudillière, Brice Res Sq Article High-content omic technologies coupled with sparsity-promoting regularization methods (SRM) have transformed the biomarker discovery process. However, the translation of computational results into a clinical use-case scenario remains challenging. A rate-limiting step is the rigorous selection of reliable biomarker candidates among a host of biological features included in multivariate models. We propose Stabl, a machine learning framework that unifies the biomarker discovery process with multivariate predictive modeling of clinical outcomes by selecting a sparse and reliable set of biomarkers. Evaluation of Stabl on synthetic datasets and four independent clinical studies demonstrates improved biomarker sparsity and reliability compared to commonly used SRMs at similar predictive performance. Stabl readily extends to double- and triple-omics integration tasks and identifies a sparser and more reliable set of biomarkers than those selected by state-of-the-art early- and late-fusion SRMs, thereby facilitating the biological interpretation and clinical translation of complex multi-omic predictive models. The complete package for Stabl is available online at https://github.com/gregbellan/Stabl. American Journal Experts 2023-02-28 /pmc/articles/PMC10002850/ /pubmed/36909508 http://dx.doi.org/10.21203/rs.3.rs-2609859/v1 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. https://creativecommons.org/licenses/by/4.0/License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License (https://creativecommons.org/licenses/by/4.0/) |
spellingShingle | Article Hédou, Julien Marić, Ivana Bellan, Grégoire Einhaus, Jakob Gaudillière, Dyani K. Ladant, Francois-Xavier Verdonk, Franck Stelzer, Ina A. Feyaerts, Dorien Tsai, Amy S. Ganio, Edward A. Sabayev, Maximilian Gillard, Joshua Bonham, Thomas A. Sato, Masaki Diop, Maïgane Angst, Martin S. Stevenson, David Aghaeepour, Nima Montanari, Andrea Gaudillière, Brice Stabl: sparse and reliable biomarker discovery in predictive modeling of high-dimensional omic data |
title | Stabl: sparse and reliable biomarker discovery in predictive modeling of high-dimensional omic data |
title_full | Stabl: sparse and reliable biomarker discovery in predictive modeling of high-dimensional omic data |
title_fullStr | Stabl: sparse and reliable biomarker discovery in predictive modeling of high-dimensional omic data |
title_full_unstemmed | Stabl: sparse and reliable biomarker discovery in predictive modeling of high-dimensional omic data |
title_short | Stabl: sparse and reliable biomarker discovery in predictive modeling of high-dimensional omic data |
title_sort | stabl: sparse and reliable biomarker discovery in predictive modeling of high-dimensional omic data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002850/ https://www.ncbi.nlm.nih.gov/pubmed/36909508 http://dx.doi.org/10.21203/rs.3.rs-2609859/v1 |
work_keys_str_mv | AT hedoujulien stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata AT maricivana stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata AT bellangregoire stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata AT einhausjakob stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata AT gaudillieredyanik stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata AT ladantfrancoisxavier stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata AT verdonkfranck stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata AT stelzerinaa stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata AT feyaertsdorien stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata AT tsaiamys stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata AT ganioedwarda stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata AT sabayevmaximilian stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata AT gillardjoshua stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata AT bonhamthomasa stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata AT satomasaki stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata AT diopmaigane stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata AT angstmartins stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata AT stevensondavid stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata AT aghaeepournima stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata AT montanariandrea stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata AT gaudillierebrice stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata |