Cargando…

Stabl: sparse and reliable biomarker discovery in predictive modeling of high-dimensional omic data

High-content omic technologies coupled with sparsity-promoting regularization methods (SRM) have transformed the biomarker discovery process. However, the translation of computational results into a clinical use-case scenario remains challenging. A rate-limiting step is the rigorous selection of rel...

Descripción completa

Detalles Bibliográficos
Autores principales: Hédou, Julien, Marić, Ivana, Bellan, Grégoire, Einhaus, Jakob, Gaudillière, Dyani K., Ladant, Francois-Xavier, Verdonk, Franck, Stelzer, Ina A., Feyaerts, Dorien, Tsai, Amy S., Ganio, Edward A., Sabayev, Maximilian, Gillard, Joshua, Bonham, Thomas A., Sato, Masaki, Diop, Maïgane, Angst, Martin S., Stevenson, David, Aghaeepour, Nima, Montanari, Andrea, Gaudillière, Brice
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Journal Experts 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002850/
https://www.ncbi.nlm.nih.gov/pubmed/36909508
http://dx.doi.org/10.21203/rs.3.rs-2609859/v1
_version_ 1784904474456752128
author Hédou, Julien
Marić, Ivana
Bellan, Grégoire
Einhaus, Jakob
Gaudillière, Dyani K.
Ladant, Francois-Xavier
Verdonk, Franck
Stelzer, Ina A.
Feyaerts, Dorien
Tsai, Amy S.
Ganio, Edward A.
Sabayev, Maximilian
Gillard, Joshua
Bonham, Thomas A.
Sato, Masaki
Diop, Maïgane
Angst, Martin S.
Stevenson, David
Aghaeepour, Nima
Montanari, Andrea
Gaudillière, Brice
author_facet Hédou, Julien
Marić, Ivana
Bellan, Grégoire
Einhaus, Jakob
Gaudillière, Dyani K.
Ladant, Francois-Xavier
Verdonk, Franck
Stelzer, Ina A.
Feyaerts, Dorien
Tsai, Amy S.
Ganio, Edward A.
Sabayev, Maximilian
Gillard, Joshua
Bonham, Thomas A.
Sato, Masaki
Diop, Maïgane
Angst, Martin S.
Stevenson, David
Aghaeepour, Nima
Montanari, Andrea
Gaudillière, Brice
author_sort Hédou, Julien
collection PubMed
description High-content omic technologies coupled with sparsity-promoting regularization methods (SRM) have transformed the biomarker discovery process. However, the translation of computational results into a clinical use-case scenario remains challenging. A rate-limiting step is the rigorous selection of reliable biomarker candidates among a host of biological features included in multivariate models. We propose Stabl, a machine learning framework that unifies the biomarker discovery process with multivariate predictive modeling of clinical outcomes by selecting a sparse and reliable set of biomarkers. Evaluation of Stabl on synthetic datasets and four independent clinical studies demonstrates improved biomarker sparsity and reliability compared to commonly used SRMs at similar predictive performance. Stabl readily extends to double- and triple-omics integration tasks and identifies a sparser and more reliable set of biomarkers than those selected by state-of-the-art early- and late-fusion SRMs, thereby facilitating the biological interpretation and clinical translation of complex multi-omic predictive models. The complete package for Stabl is available online at https://github.com/gregbellan/Stabl.
format Online
Article
Text
id pubmed-10002850
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Journal Experts
record_format MEDLINE/PubMed
spelling pubmed-100028502023-03-11 Stabl: sparse and reliable biomarker discovery in predictive modeling of high-dimensional omic data Hédou, Julien Marić, Ivana Bellan, Grégoire Einhaus, Jakob Gaudillière, Dyani K. Ladant, Francois-Xavier Verdonk, Franck Stelzer, Ina A. Feyaerts, Dorien Tsai, Amy S. Ganio, Edward A. Sabayev, Maximilian Gillard, Joshua Bonham, Thomas A. Sato, Masaki Diop, Maïgane Angst, Martin S. Stevenson, David Aghaeepour, Nima Montanari, Andrea Gaudillière, Brice Res Sq Article High-content omic technologies coupled with sparsity-promoting regularization methods (SRM) have transformed the biomarker discovery process. However, the translation of computational results into a clinical use-case scenario remains challenging. A rate-limiting step is the rigorous selection of reliable biomarker candidates among a host of biological features included in multivariate models. We propose Stabl, a machine learning framework that unifies the biomarker discovery process with multivariate predictive modeling of clinical outcomes by selecting a sparse and reliable set of biomarkers. Evaluation of Stabl on synthetic datasets and four independent clinical studies demonstrates improved biomarker sparsity and reliability compared to commonly used SRMs at similar predictive performance. Stabl readily extends to double- and triple-omics integration tasks and identifies a sparser and more reliable set of biomarkers than those selected by state-of-the-art early- and late-fusion SRMs, thereby facilitating the biological interpretation and clinical translation of complex multi-omic predictive models. The complete package for Stabl is available online at https://github.com/gregbellan/Stabl. American Journal Experts 2023-02-28 /pmc/articles/PMC10002850/ /pubmed/36909508 http://dx.doi.org/10.21203/rs.3.rs-2609859/v1 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. https://creativecommons.org/licenses/by/4.0/License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License (https://creativecommons.org/licenses/by/4.0/)
spellingShingle Article
Hédou, Julien
Marić, Ivana
Bellan, Grégoire
Einhaus, Jakob
Gaudillière, Dyani K.
Ladant, Francois-Xavier
Verdonk, Franck
Stelzer, Ina A.
Feyaerts, Dorien
Tsai, Amy S.
Ganio, Edward A.
Sabayev, Maximilian
Gillard, Joshua
Bonham, Thomas A.
Sato, Masaki
Diop, Maïgane
Angst, Martin S.
Stevenson, David
Aghaeepour, Nima
Montanari, Andrea
Gaudillière, Brice
Stabl: sparse and reliable biomarker discovery in predictive modeling of high-dimensional omic data
title Stabl: sparse and reliable biomarker discovery in predictive modeling of high-dimensional omic data
title_full Stabl: sparse and reliable biomarker discovery in predictive modeling of high-dimensional omic data
title_fullStr Stabl: sparse and reliable biomarker discovery in predictive modeling of high-dimensional omic data
title_full_unstemmed Stabl: sparse and reliable biomarker discovery in predictive modeling of high-dimensional omic data
title_short Stabl: sparse and reliable biomarker discovery in predictive modeling of high-dimensional omic data
title_sort stabl: sparse and reliable biomarker discovery in predictive modeling of high-dimensional omic data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002850/
https://www.ncbi.nlm.nih.gov/pubmed/36909508
http://dx.doi.org/10.21203/rs.3.rs-2609859/v1
work_keys_str_mv AT hedoujulien stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata
AT maricivana stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata
AT bellangregoire stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata
AT einhausjakob stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata
AT gaudillieredyanik stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata
AT ladantfrancoisxavier stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata
AT verdonkfranck stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata
AT stelzerinaa stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata
AT feyaertsdorien stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata
AT tsaiamys stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata
AT ganioedwarda stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata
AT sabayevmaximilian stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata
AT gillardjoshua stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata
AT bonhamthomasa stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata
AT satomasaki stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata
AT diopmaigane stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata
AT angstmartins stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata
AT stevensondavid stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata
AT aghaeepournima stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata
AT montanariandrea stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata
AT gaudillierebrice stablsparseandreliablebiomarkerdiscoveryinpredictivemodelingofhighdimensionalomicdata