Cargando…
Knockdown of Sly-miR164a Enhanced Plant Salt Tolerance and Improved Preharvest and Postharvest Fruit Nutrition of Tomato
Salinity stress is a serious limitation to tomato growth and development. The aim of this study was to investigate the effects of Sly-miR164a on tomato growth and fruit nutritional quality under salt stress. The results showed that the root length, fresh weight, plant height, stem diameter and ABA c...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003209/ https://www.ncbi.nlm.nih.gov/pubmed/36902070 http://dx.doi.org/10.3390/ijms24054639 |
Sumario: | Salinity stress is a serious limitation to tomato growth and development. The aim of this study was to investigate the effects of Sly-miR164a on tomato growth and fruit nutritional quality under salt stress. The results showed that the root length, fresh weight, plant height, stem diameter and ABA content of miR164a#STTM (knockdown of Sly-miR164a) lines were higher than those of WT and miR164a#OE (overexpression of Sly-miR164a) lines under salt stress. Compared with WT, miR164a#STTM tomato lines exhibited lower ROS accumulation under salt stress. In addition, the fruits of miR164a#STTM tomato lines had higher soluble solids, lycopene, ascorbic acid (ASA) and carotenoid content compared with WT. The study indicated that tomato plants were more sensitive to salt when Sly-miR164a was overexpressed, while knockdown of Sly-miR164a enhanced plant salt tolerance and improved fruit nutritional value. |
---|