Cargando…
Separase and Roads to Disengage Sister Chromatids during Anaphase
Receiving complete and undamaged genetic information is vital for the survival of daughter cells after chromosome segregation. The most critical steps in this process are accurate DNA replication during S phase and a faithful chromosome segregation during anaphase. Any errors in DNA replication or c...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003635/ https://www.ncbi.nlm.nih.gov/pubmed/36902034 http://dx.doi.org/10.3390/ijms24054604 |
_version_ | 1784904650143563776 |
---|---|
author | Konecna, Marketa Abbasi Sani, Soodabeh Anger, Martin |
author_facet | Konecna, Marketa Abbasi Sani, Soodabeh Anger, Martin |
author_sort | Konecna, Marketa |
collection | PubMed |
description | Receiving complete and undamaged genetic information is vital for the survival of daughter cells after chromosome segregation. The most critical steps in this process are accurate DNA replication during S phase and a faithful chromosome segregation during anaphase. Any errors in DNA replication or chromosome segregation have dire consequences, since cells arising after division might have either changed or incomplete genetic information. Accurate chromosome segregation during anaphase requires a protein complex called cohesin, which holds together sister chromatids. This complex unifies sister chromatids from their synthesis during S phase, until separation in anaphase. Upon entry into mitosis, the spindle apparatus is assembled, which eventually engages kinetochores of all chromosomes. Additionally, when kinetochores of sister chromatids assume amphitelic attachment to the spindle microtubules, cells are finally ready for the separation of sister chromatids. This is achieved by the enzymatic cleavage of cohesin subunits Scc1 or Rec8 by an enzyme called Separase. After cohesin cleavage, sister chromatids remain attached to the spindle apparatus and their poleward movement on the spindle is initiated. The removal of cohesion between sister chromatids is an irreversible step and therefore it must be synchronized with assembly of the spindle apparatus, since precocious separation of sister chromatids might lead into aneuploidy and tumorigenesis. In this review, we focus on recent discoveries concerning the regulation of Separase activity during the cell cycle. |
format | Online Article Text |
id | pubmed-10003635 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100036352023-03-11 Separase and Roads to Disengage Sister Chromatids during Anaphase Konecna, Marketa Abbasi Sani, Soodabeh Anger, Martin Int J Mol Sci Review Receiving complete and undamaged genetic information is vital for the survival of daughter cells after chromosome segregation. The most critical steps in this process are accurate DNA replication during S phase and a faithful chromosome segregation during anaphase. Any errors in DNA replication or chromosome segregation have dire consequences, since cells arising after division might have either changed or incomplete genetic information. Accurate chromosome segregation during anaphase requires a protein complex called cohesin, which holds together sister chromatids. This complex unifies sister chromatids from their synthesis during S phase, until separation in anaphase. Upon entry into mitosis, the spindle apparatus is assembled, which eventually engages kinetochores of all chromosomes. Additionally, when kinetochores of sister chromatids assume amphitelic attachment to the spindle microtubules, cells are finally ready for the separation of sister chromatids. This is achieved by the enzymatic cleavage of cohesin subunits Scc1 or Rec8 by an enzyme called Separase. After cohesin cleavage, sister chromatids remain attached to the spindle apparatus and their poleward movement on the spindle is initiated. The removal of cohesion between sister chromatids is an irreversible step and therefore it must be synchronized with assembly of the spindle apparatus, since precocious separation of sister chromatids might lead into aneuploidy and tumorigenesis. In this review, we focus on recent discoveries concerning the regulation of Separase activity during the cell cycle. MDPI 2023-02-27 /pmc/articles/PMC10003635/ /pubmed/36902034 http://dx.doi.org/10.3390/ijms24054604 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Konecna, Marketa Abbasi Sani, Soodabeh Anger, Martin Separase and Roads to Disengage Sister Chromatids during Anaphase |
title | Separase and Roads to Disengage Sister Chromatids during Anaphase |
title_full | Separase and Roads to Disengage Sister Chromatids during Anaphase |
title_fullStr | Separase and Roads to Disengage Sister Chromatids during Anaphase |
title_full_unstemmed | Separase and Roads to Disengage Sister Chromatids during Anaphase |
title_short | Separase and Roads to Disengage Sister Chromatids during Anaphase |
title_sort | separase and roads to disengage sister chromatids during anaphase |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003635/ https://www.ncbi.nlm.nih.gov/pubmed/36902034 http://dx.doi.org/10.3390/ijms24054604 |
work_keys_str_mv | AT konecnamarketa separaseandroadstodisengagesisterchromatidsduringanaphase AT abbasisanisoodabeh separaseandroadstodisengagesisterchromatidsduringanaphase AT angermartin separaseandroadstodisengagesisterchromatidsduringanaphase |