Cargando…
Polymer-Degrading Enzymes of Pseudomonas chloroaphis PA23 Display Broad Substrate Preferences
Although many bacterial lipases and PHA depolymerases have been identified, cloned, and characterized, there is very little information on the potential application of lipases and PHA depolymerases, especially intracellular enzymes, for the degradation of polyester polymers/plastics. We identified g...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003648/ https://www.ncbi.nlm.nih.gov/pubmed/36901931 http://dx.doi.org/10.3390/ijms24054501 |
_version_ | 1784904653111033856 |
---|---|
author | Mohanan, Nisha Wong, Michael C.-H. Budisa, Nediljko Levin, David B. |
author_facet | Mohanan, Nisha Wong, Michael C.-H. Budisa, Nediljko Levin, David B. |
author_sort | Mohanan, Nisha |
collection | PubMed |
description | Although many bacterial lipases and PHA depolymerases have been identified, cloned, and characterized, there is very little information on the potential application of lipases and PHA depolymerases, especially intracellular enzymes, for the degradation of polyester polymers/plastics. We identified genes encoding an intracellular lipase (LIP3), an extracellular lipase (LIP4), and an intracellular PHA depolymerase (PhaZ) in the genome of the bacterium Pseudomonas chlororaphis PA23. We cloned these genes into Escherichia coli and then expressed, purified, and characterized the biochemistry and substrate preferences of the enzymes they encode. Our data suggest that the LIP3, LIP4, and PhaZ enzymes differ significantly in their biochemical and biophysical properties, structural-folding characteristics, and the absence or presence of a lid domain. Despite their different properties, the enzymes exhibited broad substrate specificity and were able to hydrolyze both short- and medium-chain length polyhydroxyalkanoates (PHAs), para-nitrophenyl (pNP) alkanoates, and polylactic acid (PLA). Gel Permeation Chromatography (GPC) analyses of the polymers treated with LIP3, LIP4, and PhaZ revealed significant degradation of both the biodegradable as well as the synthetic polymers poly(ε-caprolactone) (PCL) and polyethylene succinate (PES). |
format | Online Article Text |
id | pubmed-10003648 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100036482023-03-11 Polymer-Degrading Enzymes of Pseudomonas chloroaphis PA23 Display Broad Substrate Preferences Mohanan, Nisha Wong, Michael C.-H. Budisa, Nediljko Levin, David B. Int J Mol Sci Article Although many bacterial lipases and PHA depolymerases have been identified, cloned, and characterized, there is very little information on the potential application of lipases and PHA depolymerases, especially intracellular enzymes, for the degradation of polyester polymers/plastics. We identified genes encoding an intracellular lipase (LIP3), an extracellular lipase (LIP4), and an intracellular PHA depolymerase (PhaZ) in the genome of the bacterium Pseudomonas chlororaphis PA23. We cloned these genes into Escherichia coli and then expressed, purified, and characterized the biochemistry and substrate preferences of the enzymes they encode. Our data suggest that the LIP3, LIP4, and PhaZ enzymes differ significantly in their biochemical and biophysical properties, structural-folding characteristics, and the absence or presence of a lid domain. Despite their different properties, the enzymes exhibited broad substrate specificity and were able to hydrolyze both short- and medium-chain length polyhydroxyalkanoates (PHAs), para-nitrophenyl (pNP) alkanoates, and polylactic acid (PLA). Gel Permeation Chromatography (GPC) analyses of the polymers treated with LIP3, LIP4, and PhaZ revealed significant degradation of both the biodegradable as well as the synthetic polymers poly(ε-caprolactone) (PCL) and polyethylene succinate (PES). MDPI 2023-02-24 /pmc/articles/PMC10003648/ /pubmed/36901931 http://dx.doi.org/10.3390/ijms24054501 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mohanan, Nisha Wong, Michael C.-H. Budisa, Nediljko Levin, David B. Polymer-Degrading Enzymes of Pseudomonas chloroaphis PA23 Display Broad Substrate Preferences |
title | Polymer-Degrading Enzymes of Pseudomonas chloroaphis PA23 Display Broad Substrate Preferences |
title_full | Polymer-Degrading Enzymes of Pseudomonas chloroaphis PA23 Display Broad Substrate Preferences |
title_fullStr | Polymer-Degrading Enzymes of Pseudomonas chloroaphis PA23 Display Broad Substrate Preferences |
title_full_unstemmed | Polymer-Degrading Enzymes of Pseudomonas chloroaphis PA23 Display Broad Substrate Preferences |
title_short | Polymer-Degrading Enzymes of Pseudomonas chloroaphis PA23 Display Broad Substrate Preferences |
title_sort | polymer-degrading enzymes of pseudomonas chloroaphis pa23 display broad substrate preferences |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003648/ https://www.ncbi.nlm.nih.gov/pubmed/36901931 http://dx.doi.org/10.3390/ijms24054501 |
work_keys_str_mv | AT mohanannisha polymerdegradingenzymesofpseudomonaschloroaphispa23displaybroadsubstratepreferences AT wongmichaelch polymerdegradingenzymesofpseudomonaschloroaphispa23displaybroadsubstratepreferences AT budisanediljko polymerdegradingenzymesofpseudomonaschloroaphispa23displaybroadsubstratepreferences AT levindavidb polymerdegradingenzymesofpseudomonaschloroaphispa23displaybroadsubstratepreferences |