Cargando…
Deep learning-based urban morphology for city-scale environmental modeling
Herein, we introduce a novel methodology to generate urban morphometric parameters that takes advantage of deep neural networks and inverse modeling. We take the example of Chicago, USA, where the Urban Canopy Parameters (UCPs) available from the National Urban Database and Access Portal Tool (NUDAP...
Autores principales: | Patel, Pratiman, Kalyanam, Rajesh, He, Liu, Aliaga, Daniel, Niyogi, Dev |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003744/ https://www.ncbi.nlm.nih.gov/pubmed/36909824 http://dx.doi.org/10.1093/pnasnexus/pgad027 |
Ejemplares similares
-
Scaling of the morphology of African cities
por: Prieto-Curiel, Rafael, et al.
Publicado: (2023) -
DownScaleBench for developing and applying a deep learning based urban climate downscaling- first results for high-resolution urban precipitation climatology over Austin, Texas
por: Singh, Manmeet, et al.
Publicado: (2023) -
Urban design for an urban century: shaping more livable, equitable, and resilient cities
por: Brown, Lance Jay, et al.
Publicado: (2014) -
Global to USA County Scale Analysis of Weather, Urban Density, Mobility, Homestay, and Mask Use on COVID-19
por: Jamshidi, Sajad, et al.
Publicado: (2020) -
Environmental inequality in the neighborhood networks of urban mobility in US cities
por: Brazil, Noli
Publicado: (2022)