Cargando…
Intercolonial Microdamage and Cracking Micromechanisms during Wire Drawing of Pearlitic Steel
This paper studies the drawing-induced intercolonial microdamage (ICMD) in pearlitic microstructures. The analysis was performed from the direct observation of the microstructure of the progressively cold-drawn pearlitic steel wires associated with the distinct steps (cold-drawing passes) of a real...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003887/ https://www.ncbi.nlm.nih.gov/pubmed/36902938 http://dx.doi.org/10.3390/ma16051822 |
Sumario: | This paper studies the drawing-induced intercolonial microdamage (ICMD) in pearlitic microstructures. The analysis was performed from the direct observation of the microstructure of the progressively cold-drawn pearlitic steel wires associated with the distinct steps (cold-drawing passes) of a real cold-drawing manufacturing scheme, constituted by seven cold-drawing passes. Three types of ICMD were found in the pearlitic steel microstructures, all affecting two or more pearlite colonies, namely: (i) intercolonial tearing; (ii) multi-colonial tearing; and (iii) micro-decolonization. The ICMD evolution is quite relevant to the subsequent fracture process of cold-drawn pearlitic steel wires, since the drawing-induced intercolonial micro-defects act as weakest links or fracture promoters/initiators, thereby affecting the microstructural integrity of the wires. |
---|