Cargando…
A Simple and Convenient Method for Preparing Fluorine-Free Durable Superhydrophobic Coatings Suitable for Multiple Substrates
Superhydrophobic coatings have attracted a lot of attention due to their excellent self-cleaning and anti-fouling capabilities. However, the preparation processes for several superhydrophobic coatings are intricate and expensive, which restricts their usefulness. In this work, we present a straightf...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003939/ https://www.ncbi.nlm.nih.gov/pubmed/36902886 http://dx.doi.org/10.3390/ma16051771 |
Sumario: | Superhydrophobic coatings have attracted a lot of attention due to their excellent self-cleaning and anti-fouling capabilities. However, the preparation processes for several superhydrophobic coatings are intricate and expensive, which restricts their usefulness. In this work, we present a straightforward technique for creating durable superhydrophobic coatings that can be applied to a variety of substrates. The addition of C9 petroleum resin to a styrene-butadiene-styrene (SBS) solution lengthens the SBS backbone and undergoes a cross-linking reaction to form a dense spatial cross-linked structure, improving the storage stability, viscosity, and aging resistance of the SBS. The combined solution functions as a more stable and effective adhesive. Using a two-step spraying technique, the hydrophobic silica (SiO(2)) nanoparticles solution was applied to the surface to create durable nano-superhydrophobic coatings. Additionally, the coatings have excellent mechanical, chemical, and self-cleaning stability. Furthermore, the coatings have wide application prospects in the fields of water–oil separation and corrosion prevention. |
---|