Cargando…

To the Understanding of Catalysis by D-Amino Acid Transaminases: A Case Study of the Enzyme from Aminobacterium colombiense

Pyridoxal-5′-phosphate (PLP)-dependent transaminases are highly efficient biocatalysts for stereoselective amination. D-amino acid transaminases can catalyze stereoselective transamination producing optically pure D-amino acids. The knowledge of substrate binding mode and substrate differentiation m...

Descripción completa

Detalles Bibliográficos
Autores principales: Shilova, Sofia A., Khrenova, Maria G., Matyuta, Ilya O., Nikolaeva, Alena Y., Rakitina, Tatiana V., Klyachko, Natalia L., Minyaev, Mikhail E., Boyko, Konstantin M., Popov, Vladimir O., Bezsudnova, Ekaterina Yu.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003956/
https://www.ncbi.nlm.nih.gov/pubmed/36903355
http://dx.doi.org/10.3390/molecules28052109
Descripción
Sumario:Pyridoxal-5′-phosphate (PLP)-dependent transaminases are highly efficient biocatalysts for stereoselective amination. D-amino acid transaminases can catalyze stereoselective transamination producing optically pure D-amino acids. The knowledge of substrate binding mode and substrate differentiation mechanism in D-amino acid transaminases comes down to the analysis of the transaminase from Bacillus subtilis. However, at least two groups of D-amino acid transaminases differing in the active site organization are known today. Here, we present a detailed study of D-amino acid transaminase from the gram-negative bacterium Aminobacterium colombiense with a substrate binding mode different from that for the transaminase from B. subtilis. We study the enzyme using kinetic analysis, molecular modeling, and structural analysis of holoenzyme and its complex with D-glutamate. We compare the multipoint binding of D-glutamate with the binding of other substrates, D-aspartate and D-ornithine. QM/MM MD simulation reveals that the substrate can act as a base and its proton can be transferred from the amino group to the α-carboxylate group. This process occurs simultaneously with the nucleophilic attack of the PLP carbon atom by the nitrogen atom of the substrate forming gem-diamine at the transimination step. This explains the absence of the catalytic activity toward (R)-amines that lack an α-carboxylate group. The obtained results clarify another substrate binding mode in D-amino acid transaminases and underpinned the substrate activation mechanism.