Cargando…

Differentiation of Mountain- and Garden-Cultivated Ginseng with Different Growth Years Using HS-SPME-GC-MS Coupled with Chemometrics

Although there are differences in the appearance of Mountain-Cultivated Ginseng (MCG) and Garden-Cultivated Ginseng (GCG), it is very difficult to distinguish them when the samples are processed to slices or powder. Moreover, there is significant price difference between them, which leads to the wid...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Luoqi, Wang, Ping, Li, Sen, Wu, Dan, Zhong, Yute, Li, Weijie, Xu, Haiyu, Huang, Luqi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004156/
https://www.ncbi.nlm.nih.gov/pubmed/36903262
http://dx.doi.org/10.3390/molecules28052016
Descripción
Sumario:Although there are differences in the appearance of Mountain-Cultivated Ginseng (MCG) and Garden-Cultivated Ginseng (GCG), it is very difficult to distinguish them when the samples are processed to slices or powder. Moreover, there is significant price difference between them, which leads to the widespread adulteration or falsification in the market. Thus, the authentication of MCG and GCG is crucial for the effectiveness, safety, and quality stability of ginseng. In the present study, a headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) coupled with chemometrics approach was developed to characterize the volatile component profiles in MCG and GCG with 5-,10-,15-growth years, and subsequently to discover differentiating chemical markers. As a result, we characterized, for the first time, 46 volatile components from all the samples by using the NIST database and the Wiley library. The base peak intensity chromatograms were subjected to multivariate statistical analysis to comprehensively compare the chemical differences among the above samples. MCG(5-,10-,15-years) and GCG(5-,10-,15-years) samples were mainly divided into two groups by unsupervised principal component analysis (PCA), and 5 potential cultivation-dependent markers were discovered based on orthogonal partial least squares-discriminant analysis (OPLS-DA). Moreover, MCG(5-,10-,15-years) samples were divided into three blocks, and 12 potential growth-year-dependent markers enabled differentiation. Similarly, GCG(5-,10-,15-years) samples were also separated into three groups, and six potential growth-year-dependent markers were determined. The proposed approach could be applied to directly distinguish MCG and GCG with different growth years and to identify the differentiation chemo-markers, which is an important criterion for evaluating the effectiveness, safety, and quality stability of ginseng.