Cargando…
Reduction in Errors in Roughness Evaluation with an Accurate Definition of the S-L Surface
Characterization of surface topography, roughly divided into measurement and data analysis, can be valuable in the process of validation of the tribological performance of machined parts. Surface topography, especially the roughness, can respond straightly to the machining process and, in some cases...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004312/ https://www.ncbi.nlm.nih.gov/pubmed/36902980 http://dx.doi.org/10.3390/ma16051865 |
_version_ | 1784904802118926336 |
---|---|
author | Podulka, Przemysław Macek, Wojciech Branco, Ricardo Nejad, Reza Masoudi |
author_facet | Podulka, Przemysław Macek, Wojciech Branco, Ricardo Nejad, Reza Masoudi |
author_sort | Podulka, Przemysław |
collection | PubMed |
description | Characterization of surface topography, roughly divided into measurement and data analysis, can be valuable in the process of validation of the tribological performance of machined parts. Surface topography, especially the roughness, can respond straightly to the machining process and, in some cases, is defined as a fingerprint of the manufacturing. When considering the high precision of surface topography studies, the definition of both S-surface and L-surface can drive many errors that influence the analysis of the accuracy of the manufacturing process. Even if precise measuring equipment (device and method) is provided but received data are processed erroneously, the precision is still lost. From that matter, the precise definition of the S-L surface can be valuable in the roughness evaluation allowing a reduction in the rejection of properly made parts. In this paper, it was proposed how to select an appropriate procedure for the removal of the L- and S- components from the raw measured data. Various types of surface topographies were considered, e.g., plateau-honed (some with burnished oil pockets), turned, milled, ground, laser-textured, ceramic, composite, and, generally, isotropic. They were measured with different (stylus and optical) methods, respectively, and parameters from the ISO 25178 standard were also taken into consideration. It was found that commonly used and available commercial software methods can be valuable and especially helpful in the precise definition of the S-L surface; respectively, its usage requires an appropriate response (knowledge) from the users. |
format | Online Article Text |
id | pubmed-10004312 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100043122023-03-11 Reduction in Errors in Roughness Evaluation with an Accurate Definition of the S-L Surface Podulka, Przemysław Macek, Wojciech Branco, Ricardo Nejad, Reza Masoudi Materials (Basel) Article Characterization of surface topography, roughly divided into measurement and data analysis, can be valuable in the process of validation of the tribological performance of machined parts. Surface topography, especially the roughness, can respond straightly to the machining process and, in some cases, is defined as a fingerprint of the manufacturing. When considering the high precision of surface topography studies, the definition of both S-surface and L-surface can drive many errors that influence the analysis of the accuracy of the manufacturing process. Even if precise measuring equipment (device and method) is provided but received data are processed erroneously, the precision is still lost. From that matter, the precise definition of the S-L surface can be valuable in the roughness evaluation allowing a reduction in the rejection of properly made parts. In this paper, it was proposed how to select an appropriate procedure for the removal of the L- and S- components from the raw measured data. Various types of surface topographies were considered, e.g., plateau-honed (some with burnished oil pockets), turned, milled, ground, laser-textured, ceramic, composite, and, generally, isotropic. They were measured with different (stylus and optical) methods, respectively, and parameters from the ISO 25178 standard were also taken into consideration. It was found that commonly used and available commercial software methods can be valuable and especially helpful in the precise definition of the S-L surface; respectively, its usage requires an appropriate response (knowledge) from the users. MDPI 2023-02-24 /pmc/articles/PMC10004312/ /pubmed/36902980 http://dx.doi.org/10.3390/ma16051865 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Podulka, Przemysław Macek, Wojciech Branco, Ricardo Nejad, Reza Masoudi Reduction in Errors in Roughness Evaluation with an Accurate Definition of the S-L Surface |
title | Reduction in Errors in Roughness Evaluation with an Accurate Definition of the S-L Surface |
title_full | Reduction in Errors in Roughness Evaluation with an Accurate Definition of the S-L Surface |
title_fullStr | Reduction in Errors in Roughness Evaluation with an Accurate Definition of the S-L Surface |
title_full_unstemmed | Reduction in Errors in Roughness Evaluation with an Accurate Definition of the S-L Surface |
title_short | Reduction in Errors in Roughness Evaluation with an Accurate Definition of the S-L Surface |
title_sort | reduction in errors in roughness evaluation with an accurate definition of the s-l surface |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004312/ https://www.ncbi.nlm.nih.gov/pubmed/36902980 http://dx.doi.org/10.3390/ma16051865 |
work_keys_str_mv | AT podulkaprzemysław reductioninerrorsinroughnessevaluationwithanaccuratedefinitionoftheslsurface AT macekwojciech reductioninerrorsinroughnessevaluationwithanaccuratedefinitionoftheslsurface AT brancoricardo reductioninerrorsinroughnessevaluationwithanaccuratedefinitionoftheslsurface AT nejadrezamasoudi reductioninerrorsinroughnessevaluationwithanaccuratedefinitionoftheslsurface |