Cargando…

Investigation of Cross-Linked Chitosan-Based Membranes as Potential Adsorbents for the Removal of Cu(2+) Ions from Aqueous Solutions

Rapid industrialization has led to huge amounts of organic pollutants and toxic heavy metals into aquatic environment. Among the different strategies explored, adsorption remains until the most convenient process for water remediation. In the present work, novel cross-linked chitosan-based membranes...

Descripción completa

Detalles Bibliográficos
Autores principales: Vlachou, Irene, Bokias, Georgios
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004399/
https://www.ncbi.nlm.nih.gov/pubmed/36903041
http://dx.doi.org/10.3390/ma16051926
Descripción
Sumario:Rapid industrialization has led to huge amounts of organic pollutants and toxic heavy metals into aquatic environment. Among the different strategies explored, adsorption remains until the most convenient process for water remediation. In the present work, novel cross-linked chitosan-based membranes were elaborated as potential adsorbents of Cu(2+) ions, using as cross-linking agent a random water-soluble copolymer P(DMAM-co-GMA) of glycidyl methacrylate (GMA) and N,N-dimethylacrylamide (DMAM). Cross-linked polymeric membranes were prepared through casting aqueous solutions of mixtures of P(DMAM-co-GMA) and chitosan hydrochloride, followed by thermal treatment at 120 °C. After deprotonation, the membranes were further explored as potential adsorbents of Cu(2+) ions from aqueous CuSO(4) solution. The successful complexation of copper ions with unprotonated chitosan was verified visually through the color change of the membranes and quantified through UV-vis spectroscopy. Cross-linked membranes based on unprotonated chitosan adsorb Cu(2+) ions efficiently and decrease the concentration of Cu(2+) ions in water to a few ppm. In addition, they can act as simple visual sensors for the detection of Cu(2+) ions at low concentrations (~0.2 mM). The adsorption kinetics were well-described by a pseudo-second order and intraparticle diffusion model, while the adsorption isotherms followed the Langmuir model, revealing maximum adsorption capacities in the range of 66–130 mg/g. Finally, it was shown that the membranes can be effectively regenerated using aqueous H(2)SO(4) solution and reused.