Cargando…
Modelling of Resinous Material Filling Expansion Joints in Reinforced Concrete Structures
This paper is a continuation of the research and analysis to estimate hyperelastic material constants when only uniaxial test data are available. The FEM simulation was expanded and the results obtained from three-dimensional and plane strain expansion joint models were compared and discussed. The o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004470/ https://www.ncbi.nlm.nih.gov/pubmed/36903121 http://dx.doi.org/10.3390/ma16052011 |
_version_ | 1784904840938258432 |
---|---|
author | Schabowicz, Krzysztof Waśniewski, Grzegorz Wróblewski, Krzysztof |
author_facet | Schabowicz, Krzysztof Waśniewski, Grzegorz Wróblewski, Krzysztof |
author_sort | Schabowicz, Krzysztof |
collection | PubMed |
description | This paper is a continuation of the research and analysis to estimate hyperelastic material constants when only uniaxial test data are available. The FEM simulation was expanded and the results obtained from three-dimensional and plane strain expansion joint models were compared and discussed. The original tests were carried out for a gap with a width of 10 mm, whereas in the case of axial stretching, the stresses and internal forces caused by the leading deformations were recorded for a smaller gap, and the axial compression was also recorded. The differences in the global response between the three- and two-dimensional models were also considered. Finally, using FEM simulations, the values of stresses and cross-sectional forces in the filling material were determined, which can be the basis for the design of expansion joints geometry. The results of these analyses could form the basis of guidelines for the design of expansion joint gaps filled with material, ensuring the waterproofing of the joint. |
format | Online Article Text |
id | pubmed-10004470 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100044702023-03-11 Modelling of Resinous Material Filling Expansion Joints in Reinforced Concrete Structures Schabowicz, Krzysztof Waśniewski, Grzegorz Wróblewski, Krzysztof Materials (Basel) Article This paper is a continuation of the research and analysis to estimate hyperelastic material constants when only uniaxial test data are available. The FEM simulation was expanded and the results obtained from three-dimensional and plane strain expansion joint models were compared and discussed. The original tests were carried out for a gap with a width of 10 mm, whereas in the case of axial stretching, the stresses and internal forces caused by the leading deformations were recorded for a smaller gap, and the axial compression was also recorded. The differences in the global response between the three- and two-dimensional models were also considered. Finally, using FEM simulations, the values of stresses and cross-sectional forces in the filling material were determined, which can be the basis for the design of expansion joints geometry. The results of these analyses could form the basis of guidelines for the design of expansion joint gaps filled with material, ensuring the waterproofing of the joint. MDPI 2023-02-28 /pmc/articles/PMC10004470/ /pubmed/36903121 http://dx.doi.org/10.3390/ma16052011 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Schabowicz, Krzysztof Waśniewski, Grzegorz Wróblewski, Krzysztof Modelling of Resinous Material Filling Expansion Joints in Reinforced Concrete Structures |
title | Modelling of Resinous Material Filling Expansion Joints in Reinforced Concrete Structures |
title_full | Modelling of Resinous Material Filling Expansion Joints in Reinforced Concrete Structures |
title_fullStr | Modelling of Resinous Material Filling Expansion Joints in Reinforced Concrete Structures |
title_full_unstemmed | Modelling of Resinous Material Filling Expansion Joints in Reinforced Concrete Structures |
title_short | Modelling of Resinous Material Filling Expansion Joints in Reinforced Concrete Structures |
title_sort | modelling of resinous material filling expansion joints in reinforced concrete structures |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004470/ https://www.ncbi.nlm.nih.gov/pubmed/36903121 http://dx.doi.org/10.3390/ma16052011 |
work_keys_str_mv | AT schabowiczkrzysztof modellingofresinousmaterialfillingexpansionjointsinreinforcedconcretestructures AT wasniewskigrzegorz modellingofresinousmaterialfillingexpansionjointsinreinforcedconcretestructures AT wroblewskikrzysztof modellingofresinousmaterialfillingexpansionjointsinreinforcedconcretestructures |