Cargando…

Dilatation of New Progressive Hybrid Sand and Its Effect on Surface Structure, Roughness, and Veining Creation within Grey Cast Iron

The constant effort of all metal alloy manufacturing technologies and processes is to improve the resulting quality of the processed part. Not only the metallographic structure of the material is monitored, but also the final quality of the cast surface. In foundry technologies, in addition to the q...

Descripción completa

Detalles Bibliográficos
Autores principales: Bašistová, Martina, Radkovský, Filip, Kroupová, Ivana, Lichý, Petr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004476/
https://www.ncbi.nlm.nih.gov/pubmed/36903119
http://dx.doi.org/10.3390/ma16052004
Descripción
Sumario:The constant effort of all metal alloy manufacturing technologies and processes is to improve the resulting quality of the processed part. Not only the metallographic structure of the material is monitored, but also the final quality of the cast surface. In foundry technologies, in addition to the quality of the liquid metal, external influences, such as the behaviour of the mould or core material, significantly affect the cast surface quality. As the core is heated during casting, the resulting dilatations often lead to significant volume changes causing stress foundry defects such as veining, penetration and surface roughness. In the experiment, various amounts of silica sand were replaced with artificial sand and a significant reduction in dilation and pitting of up to 52.9% was observed. An important finding was the effect of the granulometric composition and grain size of the sand on the formation of surface defects from brake thermal stresses. The specific mixture composition can be considered as an effective prevention against the formation of defects instead of using a protective coating.