Cargando…
Highly Reliable Ovonic Threshold Switch with TiN/GeTe/TiN Structure
A new architecture has become necessary owing to the power consumption and latency problems of the von Neumann architecture. A neuromorphic memory system is a promising candidate for the new system as it has the potential to process large amounts of digital information. A crossbar array (CA), which...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004575/ https://www.ncbi.nlm.nih.gov/pubmed/36903180 http://dx.doi.org/10.3390/ma16052066 |
Sumario: | A new architecture has become necessary owing to the power consumption and latency problems of the von Neumann architecture. A neuromorphic memory system is a promising candidate for the new system as it has the potential to process large amounts of digital information. A crossbar array (CA), which consists of a selector and a resistor, is the basic building block for the new system. Despite the excellent prospects of crossbar arrays, the biggest obstacle for them is sneak current, which can cause a misreading between the adjacent memory cells, thus resulting in a misoperation in the arrays. The chalcogenide-based ovonic threshold switch (OTS) is a powerful selector with highly nonlinear I–V characteristics that can be used to address the sneak current problem. In this study, we evaluated the electrical characteristics of an OTS with a TiN/GeTe/TiN structure. This device shows nonlinear DC I–V characteristics, an excellent endurance of up to 10(9) in the burst read measurement, and a stable threshold voltage below 15 mV/dec. In addition, at temperatures below 300 °C, the device exhibits good thermal stability and retains an amorphous structure, which is a strong indication of the aforementioned electrical characteristics. |
---|