Cargando…
A deep graph convolutional neural network architecture for graph classification
Graph Convolutional Networks (GCNs) are powerful deep learning methods for non-Euclidean structure data and achieve impressive performance in many fields. But most of the state-of-the-art GCN models are shallow structures with depths of no more than 3 to 4 layers, which greatly limits the ability of...
Autores principales: | Zhou, Yuchen, Huo, Hongtao, Hou, Zhiwen, Bu, Fanliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004633/ https://www.ncbi.nlm.nih.gov/pubmed/36897837 http://dx.doi.org/10.1371/journal.pone.0279604 |
Ejemplares similares
-
Co-embedding of edges and nodes with deep graph convolutional neural networks
por: Zhou, Yuchen, et al.
Publicado: (2023) -
Attention-based message passing and dynamic graph convolution for spatiotemporal data imputation
por: Wang, Yifan, et al.
Publicado: (2023) -
Enhanced brain tumor classification using graph convolutional neural network architecture
por: Ravinder, M., et al.
Publicado: (2023) -
Author Correction: Attention-based message passing and dynamic graph convolution for spatiotemporal data imputation
por: Wang, Yifan, et al.
Publicado: (2023) -
Node Classification in Complex Social Graphs via Knowledge-Graph Embeddings and Convolutional Neural Network
por: Molokwu, Bonaventure C., et al.
Publicado: (2020)