Cargando…
Grinding Burn Detection via Magnetic Barkhausen Noise Analysis Independently of Induction Hardened Depth
The electromagnetic technique based on magnetic Barkhausen noise (MBN) can be used to control the quality of ball screw shafts non-destructively, although identifying any slight grinding burns independently of induction-hardened depth remains a challenge. The capacity to detect slight grinding burns...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004644/ https://www.ncbi.nlm.nih.gov/pubmed/36903241 http://dx.doi.org/10.3390/ma16052127 |
_version_ | 1784904885197602816 |
---|---|
author | Gurruchaga, Kizkitza Lasaosa, Aitor Artetxe, Itsaso Martínez-de-Guerenu, Ane |
author_facet | Gurruchaga, Kizkitza Lasaosa, Aitor Artetxe, Itsaso Martínez-de-Guerenu, Ane |
author_sort | Gurruchaga, Kizkitza |
collection | PubMed |
description | The electromagnetic technique based on magnetic Barkhausen noise (MBN) can be used to control the quality of ball screw shafts non-destructively, although identifying any slight grinding burns independently of induction-hardened depth remains a challenge. The capacity to detect slight grinding burns was studied using a set of ball screw shafts manufactured by means of different induction hardening treatments and different grinding conditions (some of them under abnormal conditions for the purpose of generating grinding burns), and MBN measurements were taken in the whole group of ball screw shafts. Additionally, some of them were tested using two different MBN systems in order to better understand the effect of the slight grinding burns, while Vickers microhardness and nanohardness measurements were taken in selected samples. To detect the grinding burns (both slight anddata intense) with varying depths of the hardened layer, a multiparametric analysis of the MBN signal is proposed using the main parameters of the MBN two-peak envelope. At first, the samples are classified into groups depending on their hardened layer depth, estimated using the intensity of the magnetic field measured on the first peak (H1) parameter, and the threshold functions of two parameters (the minimum amplitude between the peaks of the MBN envelope (MIN) and the amplitude of the second peak (P2)) are then determined to detect the slight grinding burns for the different groups. |
format | Online Article Text |
id | pubmed-10004644 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100046442023-03-11 Grinding Burn Detection via Magnetic Barkhausen Noise Analysis Independently of Induction Hardened Depth Gurruchaga, Kizkitza Lasaosa, Aitor Artetxe, Itsaso Martínez-de-Guerenu, Ane Materials (Basel) Article The electromagnetic technique based on magnetic Barkhausen noise (MBN) can be used to control the quality of ball screw shafts non-destructively, although identifying any slight grinding burns independently of induction-hardened depth remains a challenge. The capacity to detect slight grinding burns was studied using a set of ball screw shafts manufactured by means of different induction hardening treatments and different grinding conditions (some of them under abnormal conditions for the purpose of generating grinding burns), and MBN measurements were taken in the whole group of ball screw shafts. Additionally, some of them were tested using two different MBN systems in order to better understand the effect of the slight grinding burns, while Vickers microhardness and nanohardness measurements were taken in selected samples. To detect the grinding burns (both slight anddata intense) with varying depths of the hardened layer, a multiparametric analysis of the MBN signal is proposed using the main parameters of the MBN two-peak envelope. At first, the samples are classified into groups depending on their hardened layer depth, estimated using the intensity of the magnetic field measured on the first peak (H1) parameter, and the threshold functions of two parameters (the minimum amplitude between the peaks of the MBN envelope (MIN) and the amplitude of the second peak (P2)) are then determined to detect the slight grinding burns for the different groups. MDPI 2023-03-06 /pmc/articles/PMC10004644/ /pubmed/36903241 http://dx.doi.org/10.3390/ma16052127 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gurruchaga, Kizkitza Lasaosa, Aitor Artetxe, Itsaso Martínez-de-Guerenu, Ane Grinding Burn Detection via Magnetic Barkhausen Noise Analysis Independently of Induction Hardened Depth |
title | Grinding Burn Detection via Magnetic Barkhausen Noise Analysis Independently of Induction Hardened Depth |
title_full | Grinding Burn Detection via Magnetic Barkhausen Noise Analysis Independently of Induction Hardened Depth |
title_fullStr | Grinding Burn Detection via Magnetic Barkhausen Noise Analysis Independently of Induction Hardened Depth |
title_full_unstemmed | Grinding Burn Detection via Magnetic Barkhausen Noise Analysis Independently of Induction Hardened Depth |
title_short | Grinding Burn Detection via Magnetic Barkhausen Noise Analysis Independently of Induction Hardened Depth |
title_sort | grinding burn detection via magnetic barkhausen noise analysis independently of induction hardened depth |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004644/ https://www.ncbi.nlm.nih.gov/pubmed/36903241 http://dx.doi.org/10.3390/ma16052127 |
work_keys_str_mv | AT gurruchagakizkitza grindingburndetectionviamagneticbarkhausennoiseanalysisindependentlyofinductionhardeneddepth AT lasaosaaitor grindingburndetectionviamagneticbarkhausennoiseanalysisindependentlyofinductionhardeneddepth AT artetxeitsaso grindingburndetectionviamagneticbarkhausennoiseanalysisindependentlyofinductionhardeneddepth AT martinezdeguerenuane grindingburndetectionviamagneticbarkhausennoiseanalysisindependentlyofinductionhardeneddepth |