Cargando…
Epitaxial CdSe/PbSe Heterojunction Growth and MWIR Photovoltaic Detector
A novel Epitaxial Cadmium Selenide (CdSe) on Lead Selenide (PbSe) type-II heterojunction photovoltaic detector has been demonstrated by Molecular Beam Epitaxy (MBE) growth of n-type CdSe on p-type PbSe single crystalline film. The use of Reflection High-Energy Electron Diffraction (RHEED) during the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004645/ https://www.ncbi.nlm.nih.gov/pubmed/36902982 http://dx.doi.org/10.3390/ma16051866 |
Sumario: | A novel Epitaxial Cadmium Selenide (CdSe) on Lead Selenide (PbSe) type-II heterojunction photovoltaic detector has been demonstrated by Molecular Beam Epitaxy (MBE) growth of n-type CdSe on p-type PbSe single crystalline film. The use of Reflection High-Energy Electron Diffraction (RHEED) during the nucleation and growth of CdSe indicates high-quality single-phase cubic CdSe. This is a first-time demonstration of single crystalline and single phase CdSe growth on single crystalline PbSe, to the best of our knowledge. The current–voltage characteristic indicates a p–n junction diode with a rectifying factor over 50 at room temperature. The detector structure is characterized by radiometric measurement. A 30 μm × 30 μm pixel achieved a peak responsivity of 0.06 A/W and a specific detectivity (D*) of 6.5 × 10(8) Jones under a zero bias photovoltaic operation. With decreasing temperature, the optical signal increased by almost an order of magnitude as it approached 230 K (with thermoelectric cooling) while maintaining a similar level of noise, achieving a responsivity of 0.441 A/W and a D* of 4.4 × 10(9) Jones at 230 K. |
---|