Cargando…

Influence of Microalloying on the Microstructures and Properties of Spalling-Resistant Wheel Steel

Microalloyed steels have emerged to replace conventional plain-carbon steels to achieve longer wheel life on Chinese railroads. In this work, with the aim of preventing spalling, a mechanism that consists of ratcheting and shakedown theory correlated with steel properties is systematically investiga...

Descripción completa

Detalles Bibliográficos
Autores principales: Cong, Tao, Jiang, Bo, Zou, Qiang, Yao, Sancheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004712/
https://www.ncbi.nlm.nih.gov/pubmed/36903090
http://dx.doi.org/10.3390/ma16051972
Descripción
Sumario:Microalloyed steels have emerged to replace conventional plain-carbon steels to achieve longer wheel life on Chinese railroads. In this work, with the aim of preventing spalling, a mechanism that consists of ratcheting and shakedown theory correlated with steel properties is systematically investigated. Mechanical and ratcheting tests were carried out for microalloyed wheel steel to which vanadium was added in the range of 0–0.15 wt.% and the results were compared with that obtained for conventional plain-carbon wheel steel. The microstructure and precipitation were characterized via microscopy. As a result, the grain size was not obviously refined, and the pearlite lamellar spacing decreased from 148 nm to 131 nm in microalloyed wheel steel. Moreover, an increase in the number of vanadium carbide precipitates was observed, which were mainly dispersed and uneven, and precipitated in the pro-eutectoid ferrite region, in contrast to the observation of lower precipitation in the pearlite. It has been found that vanadium addition can lead to an increase in yield strength by precipitation strengthening, with no reduction or increase in tensile strength, elongation or hardness. The ratcheting strain rate for microalloyed wheel steel was determined to be lower than that for plain-carbon wheel steel via asymmetrical cyclic stressing tests. An increase in the pro-eutectoid ferrite content leads to beneficial wear, which can diminish spalling and surface-initiated RCF.