Cargando…

Creep Deformation and Its Effect on Mechanical Properties and Microstructure of Magnesium Phosphate Cement Concrete

Creep deformation is an important aspect of magnesium phosphate cement (MPC) used as a structural material. In this study, the shrinkage and creep deformation behaviors of three different MPC concretes were observed for 550 days. The mechanical properties, phase composition, pore structure, and micr...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Yuxin, Qin, Jihui, Li, Zhen, Jia, Xingwen, Qian, Jueshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004722/
https://www.ncbi.nlm.nih.gov/pubmed/36902875
http://dx.doi.org/10.3390/ma16051760
Descripción
Sumario:Creep deformation is an important aspect of magnesium phosphate cement (MPC) used as a structural material. In this study, the shrinkage and creep deformation behaviors of three different MPC concretes were observed for 550 days. The mechanical properties, phase composition, pore structure, and microstructure of MPC concretes after shrinkage and creep tests were investigated. The results showed that the shrinkage and creep strains of MPC concretes stabilized in the ranges of −140 to −170 με and −200 to −240 με, respectively. The low water-to-binder ratio and the formation of crystalline struvite were responsible for such low deformation. The creep strain had almost no effect on the phase composition; however, it increased the crystal size of struvite and reduced the porosity, especially the volume of pores with diameters <20 nm and >200 nm. The modification of struvite and densification of microstructure led to an improvement in both compressive strength and splitting tensile strength.