Cargando…

Chemopreventive Activity of Ellagitannins from Acer pseudosieboldianum (Pax) Komarov Leaves on Prostate Cancer Cells

Several studies have shown that compounds from Acer pseudosieboldianum (Pax) Komarov leaves (APL) display potent anti-oxidative, anti-inflammatory, and anti-proliferative activities. Prostate cancer (PCa) is the most common cancer among older men, and DNA methylation is associated with PCa progressi...

Descripción completa

Detalles Bibliográficos
Autores principales: Son, Se-Yeon, Choi, Jin-Hyeok, Kim, Eun-Bin, Yin, Jun, Seonu, Seo-Yeon, Jin, Si-Yeon, Oh, Jae-Yoon, Lee, Min-Won
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10005130/
https://www.ncbi.nlm.nih.gov/pubmed/36903908
http://dx.doi.org/10.3390/plants12051047
Descripción
Sumario:Several studies have shown that compounds from Acer pseudosieboldianum (Pax) Komarov leaves (APL) display potent anti-oxidative, anti-inflammatory, and anti-proliferative activities. Prostate cancer (PCa) is the most common cancer among older men, and DNA methylation is associated with PCa progression. This study aimed to investigate the chemopreventive activities of the compounds which were isolated from APL on prostate cancer cells and elucidate the mechanisms of these compounds in relation to DNA methylation. One novel ellagitannin [komaniin (14)] and thirteen other known compounds, including glucose derivatives [ethyl-β-D-glucopyranose (3) and (4R)-p-menth-1-ene-7,8-diol 7-O-β-D-glucopyranoside (4)], one phenylpropanoid [junipetrioloside A (5)], three phenolic acid derivatives [ellagic acid-4-β-D-xylopyranoside (1), 4-O-galloyl-quinic acid (2), and gallic acid (8)], two flavonoids [quercetin (11) and kaempferol (12)], and five hydrolysable tannins [geraniin (6), punicafolin (7), granatin B (9), 1,2,3,4,6-penta-galloyl-β-D-glucopyranoside (10), and mallotusinic acid (13)] were isolated from APL. The hydrolyzable tannins (6, 7, 9, 10, 13, and 14) showed potent anti-PCa proliferative and apoptosis-promoting activities. Among the compounds, the ellagitannins in the dehydrohexahydroxydiphenoyl (DHHDP) group (6, 9, 13, and 14), the novel compound 14 showed the most potent inhibitory activity on DNA methyltransferase (DNMT1, 3a and 3b) and glutathione S-transferase P1 methyl removing and re-expression activities. Thus, our results suggested that the ellagitannins (6, 9, 13, and 14) isolated from APL could be a promising treatment option for PCa.