Cargando…
Rectangular Transition Metal-rTCNQ Organic Frameworks Enabling Polysulfide Anchoring and Fast Electrocatalytic Activity in Li-Sulfur Batteries: A Density Functional Theory Perspective
Two-dimensional metal-organic frameworks (MOFs) have shown great development po-tential in the field of lithium-sulfur (Li-S) batteries. In this theoretical research work, we propose a novel 3d transition metals (TM)-embedded rectangular tetracyanoquinodimethane (TM-rTCNQ) as a potential high-perfor...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10005228/ https://www.ncbi.nlm.nih.gov/pubmed/36903634 http://dx.doi.org/10.3390/molecules28052389 |
Sumario: | Two-dimensional metal-organic frameworks (MOFs) have shown great development po-tential in the field of lithium-sulfur (Li-S) batteries. In this theoretical research work, we propose a novel 3d transition metals (TM)-embedded rectangular tetracyanoquinodimethane (TM-rTCNQ) as a potential high-performance sulfur host. The calculated results show that all TM-rTCNQ structures have excellent structural stability and metallic properties. Through exploring different adsorption patterns, we discovered that TM-rTCNQ (TM = V, Cr, Mn, Fe and Co) monolayers possess moderate adsorption strength for all polysulfide species, which is mainly due to the existence of the TM-N(4) active center in these frame systems. Especially for the non-synthesized V-rCTNQ, the theoretical calculation fully predicts that the material has the most suitable adsorption strength for polysul-fides, excellent charging-discharging reaction and Li-ion diffusion performance. Additionally, Mn-rTCNQ, which has been synthesized experimentally, is also suitable for further experimental con-firmation. These findings not only provide novel MOFs for promoting the commercialization of Li-S batteries, but also provide unique insights for fully understanding their catalytic reaction mecha-nism. |
---|