Cargando…

A Genome-Wide Association Study and Genomic Prediction for Fiber and Sucrose Contents in a Mapping Population of LCP 85-384 Sugarcane

Sugarcane (Saccharum spp. hybrids) is an economically important crop for both sugar and biofuel industries. Fiber and sucrose contents are the two most critical quantitative traits in sugarcane breeding that require multiple-year and multiple-location evaluations. Marker-assisted selection (MAS) cou...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiong, Haizheng, Chen, Yilin, Pan, Yong-Bao, Shi, Ainong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10005238/
https://www.ncbi.nlm.nih.gov/pubmed/36903902
http://dx.doi.org/10.3390/plants12051041
_version_ 1784905031017824256
author Xiong, Haizheng
Chen, Yilin
Pan, Yong-Bao
Shi, Ainong
author_facet Xiong, Haizheng
Chen, Yilin
Pan, Yong-Bao
Shi, Ainong
author_sort Xiong, Haizheng
collection PubMed
description Sugarcane (Saccharum spp. hybrids) is an economically important crop for both sugar and biofuel industries. Fiber and sucrose contents are the two most critical quantitative traits in sugarcane breeding that require multiple-year and multiple-location evaluations. Marker-assisted selection (MAS) could significantly reduce the time and cost of developing new sugarcane varieties. The objectives of this study were to conduct a genome-wide association study (GWAS) to identify DNA markers associated with fiber and sucrose contents and to perform genomic prediction (GP) for the two traits. Fiber and sucrose data were collected from 237 self-pollinated progenies of LCP 85-384, the most popular Louisiana sugarcane cultivar from 1999 to 2007. The GWAS was performed using 1310 polymorphic DNA marker alleles with three models of TASSEL 5, single marker regression (SMR), general linear model (GLM) and mixed linear model (MLM), and the fixed and random model circulating probability unification (FarmCPU) of R package. The results showed that 13 and 9 markers were associated with fiber and sucrose contents, respectively. The GP was performed by cross-prediction with five models, ridge regression best linear unbiased prediction (rrBLUP), Bayesian ridge regression (BRR), Bayesian A (BA), Bayesian B (BB) and Bayesian least absolute shrinkage and selection operator (BL). The accuracy of GP varied from 55.8% to 58.9% for fiber content and 54.6% to 57.2% for sucrose content. Upon validation, these markers can be applied in MAS and genomic selection (GS) to select superior sugarcane with good fiber and high sucrose contents.
format Online
Article
Text
id pubmed-10005238
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-100052382023-03-11 A Genome-Wide Association Study and Genomic Prediction for Fiber and Sucrose Contents in a Mapping Population of LCP 85-384 Sugarcane Xiong, Haizheng Chen, Yilin Pan, Yong-Bao Shi, Ainong Plants (Basel) Article Sugarcane (Saccharum spp. hybrids) is an economically important crop for both sugar and biofuel industries. Fiber and sucrose contents are the two most critical quantitative traits in sugarcane breeding that require multiple-year and multiple-location evaluations. Marker-assisted selection (MAS) could significantly reduce the time and cost of developing new sugarcane varieties. The objectives of this study were to conduct a genome-wide association study (GWAS) to identify DNA markers associated with fiber and sucrose contents and to perform genomic prediction (GP) for the two traits. Fiber and sucrose data were collected from 237 self-pollinated progenies of LCP 85-384, the most popular Louisiana sugarcane cultivar from 1999 to 2007. The GWAS was performed using 1310 polymorphic DNA marker alleles with three models of TASSEL 5, single marker regression (SMR), general linear model (GLM) and mixed linear model (MLM), and the fixed and random model circulating probability unification (FarmCPU) of R package. The results showed that 13 and 9 markers were associated with fiber and sucrose contents, respectively. The GP was performed by cross-prediction with five models, ridge regression best linear unbiased prediction (rrBLUP), Bayesian ridge regression (BRR), Bayesian A (BA), Bayesian B (BB) and Bayesian least absolute shrinkage and selection operator (BL). The accuracy of GP varied from 55.8% to 58.9% for fiber content and 54.6% to 57.2% for sucrose content. Upon validation, these markers can be applied in MAS and genomic selection (GS) to select superior sugarcane with good fiber and high sucrose contents. MDPI 2023-02-24 /pmc/articles/PMC10005238/ /pubmed/36903902 http://dx.doi.org/10.3390/plants12051041 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Xiong, Haizheng
Chen, Yilin
Pan, Yong-Bao
Shi, Ainong
A Genome-Wide Association Study and Genomic Prediction for Fiber and Sucrose Contents in a Mapping Population of LCP 85-384 Sugarcane
title A Genome-Wide Association Study and Genomic Prediction for Fiber and Sucrose Contents in a Mapping Population of LCP 85-384 Sugarcane
title_full A Genome-Wide Association Study and Genomic Prediction for Fiber and Sucrose Contents in a Mapping Population of LCP 85-384 Sugarcane
title_fullStr A Genome-Wide Association Study and Genomic Prediction for Fiber and Sucrose Contents in a Mapping Population of LCP 85-384 Sugarcane
title_full_unstemmed A Genome-Wide Association Study and Genomic Prediction for Fiber and Sucrose Contents in a Mapping Population of LCP 85-384 Sugarcane
title_short A Genome-Wide Association Study and Genomic Prediction for Fiber and Sucrose Contents in a Mapping Population of LCP 85-384 Sugarcane
title_sort genome-wide association study and genomic prediction for fiber and sucrose contents in a mapping population of lcp 85-384 sugarcane
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10005238/
https://www.ncbi.nlm.nih.gov/pubmed/36903902
http://dx.doi.org/10.3390/plants12051041
work_keys_str_mv AT xionghaizheng agenomewideassociationstudyandgenomicpredictionforfiberandsucrosecontentsinamappingpopulationoflcp85384sugarcane
AT chenyilin agenomewideassociationstudyandgenomicpredictionforfiberandsucrosecontentsinamappingpopulationoflcp85384sugarcane
AT panyongbao agenomewideassociationstudyandgenomicpredictionforfiberandsucrosecontentsinamappingpopulationoflcp85384sugarcane
AT shiainong agenomewideassociationstudyandgenomicpredictionforfiberandsucrosecontentsinamappingpopulationoflcp85384sugarcane
AT xionghaizheng genomewideassociationstudyandgenomicpredictionforfiberandsucrosecontentsinamappingpopulationoflcp85384sugarcane
AT chenyilin genomewideassociationstudyandgenomicpredictionforfiberandsucrosecontentsinamappingpopulationoflcp85384sugarcane
AT panyongbao genomewideassociationstudyandgenomicpredictionforfiberandsucrosecontentsinamappingpopulationoflcp85384sugarcane
AT shiainong genomewideassociationstudyandgenomicpredictionforfiberandsucrosecontentsinamappingpopulationoflcp85384sugarcane