Cargando…
Prediction of ADMET Properties of Anti-Breast Cancer Compounds Using Three Machine Learning Algorithms
In recent years, machine learning methods have been applied successfully in many fields. In this paper, three machine learning algorithms, including partial least squares-discriminant analysis (PLS-DA), adaptive boosting (AdaBoost), and light gradient boosting machine (LGBM), were applied to establi...
Autores principales: | Li, Xinkang, Tang, Lijun, Li, Zeying, Qiu, Dian, Yang, Zhuoling, Li, Baoqiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10005249/ https://www.ncbi.nlm.nih.gov/pubmed/36903569 http://dx.doi.org/10.3390/molecules28052326 |
Ejemplares similares
-
New Constructed EEM Spectra Combined with N-PLS Analysis Approach as an Effective Way to Determine Multiple Target Compounds in Complex Samples
por: Li, Zeying, et al.
Publicado: (2022) -
A machine learning-based approach to ERα bioactivity and drug ADMET prediction
por: An, Tianbo, et al.
Publicado: (2023) -
FP-ADMET: a compendium of fingerprint-based ADMET prediction models
por: Venkatraman, Vishwesh
Publicado: (2021) -
In silico Study of Antiviral Activity of Polyphenol Compounds from Ocimum basilicum by Molecular Docking, ADMET, and Drug-Likeness Analysis
por: Kurnia, Dikdik, et al.
Publicado: (2023) -
Compound Prunetin Induces Cell Death in Gastric Cancer Cell with Potent Anti-Proliferative Properties: In Vitro Assay, Molecular Docking, Dynamics, and ADMET Studies
por: Vetrivel, Preethi, et al.
Publicado: (2020)