Cargando…
Molecular Simulation Study on the Interaction between Porcine CR1-like and C3b
The molecular basis of porcine red blood cell immune adhesion function stems from the complement receptor type 1-like (CR1-like) on its cell membrane. The ligand for CR1-like is C3b, which is produced by the cleavage of complement C3; however, the molecular mechanism of the immune adhesion of porcin...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10005376/ https://www.ncbi.nlm.nih.gov/pubmed/36903431 http://dx.doi.org/10.3390/molecules28052183 |
Sumario: | The molecular basis of porcine red blood cell immune adhesion function stems from the complement receptor type 1-like (CR1-like) on its cell membrane. The ligand for CR1-like is C3b, which is produced by the cleavage of complement C3; however, the molecular mechanism of the immune adhesion of porcine erythrocytes is still unclear. Here, homology modeling was used to construct three-dimensional models of C3b and two fragments of CR1-like. An interaction model of C3b–CR1-like was constructed by molecular docking, and molecular structure optimization was achieved using molecular dynamics simulation. A simulated alanine mutation scan revealed that the amino acids Tyr761, Arg763, Phe765, Thr789, and Val873 of CR1-like SCR 12–14 and the amino acid residues Tyr1210, Asn1244, Val1249, Thr1253, Tyr1267, Val1322, and Val1339 of CR1-like SCR 19–21 are key residues involved in the interaction of porcine C3b with CR1-like. This study investigated the interaction between porcine CR1-like and C3b using molecular simulation to clarify the molecular mechanism of the immune adhesion of porcine erythrocytes. |
---|