Cargando…
A Sulfur-Bridging Sulfonate-Modified Zinc(II) Phthalocyanine Nanoliposome Possessing Hybrid Type I and Type II Photoreactions with Efficient Photodynamic Anticancer Effects
Phthalocyanines are potentially promising photosensitizers (PSs) for photodynamic therapy (PDT), but the inherent defects such as aggregation-caused quenching effects and non-specific toxicity severely hinder their further application in PDT. Herein, we synthesized two zinc(II) phthalocyanines (PcSA...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10005636/ https://www.ncbi.nlm.nih.gov/pubmed/36903498 http://dx.doi.org/10.3390/molecules28052250 |
Sumario: | Phthalocyanines are potentially promising photosensitizers (PSs) for photodynamic therapy (PDT), but the inherent defects such as aggregation-caused quenching effects and non-specific toxicity severely hinder their further application in PDT. Herein, we synthesized two zinc(II) phthalocyanines (PcSA and PcOA) monosubstituted with a sulphonate group in the alpha position with “O bridge” and “S bridge” as bonds and prepared a liposomal nanophotosensitizer (PcSA@Lip) by thin-film hydration method to regulate the aggregation of PcSA in the aqueous solution and enhance its tumor targeting ability. PcSA@Lip exhibited highly efficient production of superoxide radical (O(2)(∙−)) and singlet oxygen ((1)O(2)) in water under light irradiation, which were 2.6-fold and 15.4-fold higher than those of free PcSA, respectively. Furthermore, PcSA@Lip was able to accumulate selectively in tumors after intravenous injection with the fluorescence intensity ratio of tumors to livers was 4.1:1. The significant tumor inhibition effects resulted in a 98% tumor inhibition rate after PcSA@Lip was injected intravenously at an ultra-low PcSA@Lip dose (0.8 nmol g(−1) PcSA) and light dose (30 J cm(−2)). Therefore, the liposomal PcSA@Lip is a prospective nanophotosensitizer possessing hybrid type I and type II photoreactions with efficient photodynamic anticancer effects. |
---|