Cargando…
Doping of Transparent Electrode Based on Oriented Networks of Nickel in Poly(3,4-Ethylenedioxythiophene) Polystyrene Sulfonate Matrix with P-Toluenesulfonic Acid
This work aimed to obtain an optically transparent electrode based on the oriented nanonetworks of nickel in poly(3,4-ethylenedioxythiophene) polystyrene sulfonate matrix. Optically transparent electrodes are used in many modern devices. Therefore, the search for new inexpensive and environmentally...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10005722/ https://www.ncbi.nlm.nih.gov/pubmed/36903709 http://dx.doi.org/10.3390/nano13050831 |
_version_ | 1784905151216091136 |
---|---|
author | Nizameev, Irek R. Nizameeva, Guliya R. Kadirov, Marsil K. |
author_facet | Nizameev, Irek R. Nizameeva, Guliya R. Kadirov, Marsil K. |
author_sort | Nizameev, Irek R. |
collection | PubMed |
description | This work aimed to obtain an optically transparent electrode based on the oriented nanonetworks of nickel in poly(3,4-ethylenedioxythiophene) polystyrene sulfonate matrix. Optically transparent electrodes are used in many modern devices. Therefore, the search for new inexpensive and environmentally friendly materials for them remains an urgent task. We have previously developed a material for optically transparent electrodes based on oriented platinum nanonetworks. This technique was upgraded to obtain a cheaper option from oriented nickel networks. The study was carried out to find the optimal electrical conductivity and optical transparency values of the developed coating, and the dependence of these values on the amount of nickel used was investigated. The figure of merit (FoM) was used as a criterion for the quality of the material in terms of finding the optimal characteristics. It was shown that doping PEDOT: PSS with p-toluenesulfonic acid in the design of an optically transparent electroconductive composite coating based on oriented nickel networks in a polymer matrix is expedient. It was found that the addition of p-toluenesulfonic acid to an aqueous dispersion of PEDOT: PSS with a concentration of 0.5% led to an eight-fold decrease in the surface resistance of the resulting coating. |
format | Online Article Text |
id | pubmed-10005722 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100057222023-03-11 Doping of Transparent Electrode Based on Oriented Networks of Nickel in Poly(3,4-Ethylenedioxythiophene) Polystyrene Sulfonate Matrix with P-Toluenesulfonic Acid Nizameev, Irek R. Nizameeva, Guliya R. Kadirov, Marsil K. Nanomaterials (Basel) Article This work aimed to obtain an optically transparent electrode based on the oriented nanonetworks of nickel in poly(3,4-ethylenedioxythiophene) polystyrene sulfonate matrix. Optically transparent electrodes are used in many modern devices. Therefore, the search for new inexpensive and environmentally friendly materials for them remains an urgent task. We have previously developed a material for optically transparent electrodes based on oriented platinum nanonetworks. This technique was upgraded to obtain a cheaper option from oriented nickel networks. The study was carried out to find the optimal electrical conductivity and optical transparency values of the developed coating, and the dependence of these values on the amount of nickel used was investigated. The figure of merit (FoM) was used as a criterion for the quality of the material in terms of finding the optimal characteristics. It was shown that doping PEDOT: PSS with p-toluenesulfonic acid in the design of an optically transparent electroconductive composite coating based on oriented nickel networks in a polymer matrix is expedient. It was found that the addition of p-toluenesulfonic acid to an aqueous dispersion of PEDOT: PSS with a concentration of 0.5% led to an eight-fold decrease in the surface resistance of the resulting coating. MDPI 2023-02-23 /pmc/articles/PMC10005722/ /pubmed/36903709 http://dx.doi.org/10.3390/nano13050831 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nizameev, Irek R. Nizameeva, Guliya R. Kadirov, Marsil K. Doping of Transparent Electrode Based on Oriented Networks of Nickel in Poly(3,4-Ethylenedioxythiophene) Polystyrene Sulfonate Matrix with P-Toluenesulfonic Acid |
title | Doping of Transparent Electrode Based on Oriented Networks of Nickel in Poly(3,4-Ethylenedioxythiophene) Polystyrene Sulfonate Matrix with P-Toluenesulfonic Acid |
title_full | Doping of Transparent Electrode Based on Oriented Networks of Nickel in Poly(3,4-Ethylenedioxythiophene) Polystyrene Sulfonate Matrix with P-Toluenesulfonic Acid |
title_fullStr | Doping of Transparent Electrode Based on Oriented Networks of Nickel in Poly(3,4-Ethylenedioxythiophene) Polystyrene Sulfonate Matrix with P-Toluenesulfonic Acid |
title_full_unstemmed | Doping of Transparent Electrode Based on Oriented Networks of Nickel in Poly(3,4-Ethylenedioxythiophene) Polystyrene Sulfonate Matrix with P-Toluenesulfonic Acid |
title_short | Doping of Transparent Electrode Based on Oriented Networks of Nickel in Poly(3,4-Ethylenedioxythiophene) Polystyrene Sulfonate Matrix with P-Toluenesulfonic Acid |
title_sort | doping of transparent electrode based on oriented networks of nickel in poly(3,4-ethylenedioxythiophene) polystyrene sulfonate matrix with p-toluenesulfonic acid |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10005722/ https://www.ncbi.nlm.nih.gov/pubmed/36903709 http://dx.doi.org/10.3390/nano13050831 |
work_keys_str_mv | AT nizameevirekr dopingoftransparentelectrodebasedonorientednetworksofnickelinpoly34ethylenedioxythiophenepolystyrenesulfonatematrixwithptoluenesulfonicacid AT nizameevaguliyar dopingoftransparentelectrodebasedonorientednetworksofnickelinpoly34ethylenedioxythiophenepolystyrenesulfonatematrixwithptoluenesulfonicacid AT kadirovmarsilk dopingoftransparentelectrodebasedonorientednetworksofnickelinpoly34ethylenedioxythiophenepolystyrenesulfonatematrixwithptoluenesulfonicacid |