Cargando…

The Effect of Human and Bovine Milk Osteopontin on Intestinal Caco-2 Cells: A Transcriptome Comparison

Osteopontin (OPN) is a multifunctional protein abundantly present in human milk, whereas the concentration is significantly lower in bovine milk. Human and bovine milk OPN are structurally similar and both proteins resist gastric digestion and reach the intestines in a bioactive form. Intervention s...

Descripción completa

Detalles Bibliográficos
Autores principales: Christensen, Brian, Buitenhuis, Albert J., Jacobsen, Lotte N., Ostenfeld, Marie S., Sørensen, Esben S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10005736/
https://www.ncbi.nlm.nih.gov/pubmed/36904165
http://dx.doi.org/10.3390/nu15051166
Descripción
Sumario:Osteopontin (OPN) is a multifunctional protein abundantly present in human milk, whereas the concentration is significantly lower in bovine milk. Human and bovine milk OPN are structurally similar and both proteins resist gastric digestion and reach the intestines in a bioactive form. Intervention studies have indicated the beneficial effects of supplementing infant formula with bovine milk OPN and several in vivo and in vitro studies have shown that bovine milk OPN positively influences intestinal development. To investigate the functional relationship, we compared the effect of simulated gastrointestinal digested human and bovine milk OPN on gene expression in Caco-2 cells. After incubation, total RNA was extracted and sequenced and transcripts were mapped to the human genome. Human and bovine milk OPN regulated the expression of 239 and 322 genes, respectively. A total of 131 genes were similarly regulated by the OPNs. As a control, a whey protein fraction with a high content of alpha-lactalbumin had a very limited transcriptional impact on the cells. Enrichment data analysis showed that biological processes related to the ubiquitin system, DNA binding, and genes associated with transcription and transcription control pathways were affected by the OPNs. Collectively, this study shows that human and bovine milk OPN have a significant and highly comparable effect on the intestinal transcriptome.