Cargando…
ZIF-8@Rhodamine B as a Self-Reporting Material for Pollutant Extraction Applications
Herein, we have evaluated the potential of dye-encapsulation as a simple mechanism to self-report the stability of MOFs for pollutant extraction applications. This enabled the visual detection of material stability issues during the selected applications. As proof-of-concept, the zeolitic imidazolat...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10005746/ https://www.ncbi.nlm.nih.gov/pubmed/36903719 http://dx.doi.org/10.3390/nano13050842 |
Sumario: | Herein, we have evaluated the potential of dye-encapsulation as a simple mechanism to self-report the stability of MOFs for pollutant extraction applications. This enabled the visual detection of material stability issues during the selected applications. As proof-of-concept, the zeolitic imidazolate framework (ZIF-8) material was prepared in aqueous medium and at room temperature in the presence of the dye rhodamine B. The total amount of loaded rhodamine B was determined using UV-vis spectrophotometry. The prepared dye-encapsulated ZIF-8 showed a comparable extraction performance with bare ZIF-8 for the removal of hydrophobic endocrine-disrupting phenols, such as 4-tert-octylphenol and 4-nonylphenol, and improved the extraction performance of more hydrophilic endocrine disruptors, such as bisphenol A and 4-tert-butylphenol. |
---|