Cargando…

Cluster-Assembled Zirconia Substrates Accelerate the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

Due to their high mechanical strength and good biocompatibility, nanostructured zirconia surfaces (ns-ZrOx) are widely used for bio-applications. Through supersonic cluster beam deposition, we produced ZrOx films with controllable roughness at the nanoscale, mimicking the morphological and topograph...

Descripción completa

Detalles Bibliográficos
Autores principales: Castiglioni, Sara, Locatelli, Laura, Cazzaniga, Alessandra, Orecchio, Francesca Maria, Santaniello, Tommaso, Piazzoni, Claudio, Bureau, Lionel, Borghi, Francesca, Milani, Paolo, Maier, Jeanette A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10005756/
https://www.ncbi.nlm.nih.gov/pubmed/36903679
http://dx.doi.org/10.3390/nano13050801
_version_ 1784905159701168128
author Castiglioni, Sara
Locatelli, Laura
Cazzaniga, Alessandra
Orecchio, Francesca Maria
Santaniello, Tommaso
Piazzoni, Claudio
Bureau, Lionel
Borghi, Francesca
Milani, Paolo
Maier, Jeanette A.
author_facet Castiglioni, Sara
Locatelli, Laura
Cazzaniga, Alessandra
Orecchio, Francesca Maria
Santaniello, Tommaso
Piazzoni, Claudio
Bureau, Lionel
Borghi, Francesca
Milani, Paolo
Maier, Jeanette A.
author_sort Castiglioni, Sara
collection PubMed
description Due to their high mechanical strength and good biocompatibility, nanostructured zirconia surfaces (ns-ZrOx) are widely used for bio-applications. Through supersonic cluster beam deposition, we produced ZrOx films with controllable roughness at the nanoscale, mimicking the morphological and topographical properties of the extracellular matrix. We show that a 20 nm ns-ZrOx surface accelerates the osteogenic differentiation of human bone marrow-derived MSCs (bMSCs) by increasing the deposition of calcium in the extracellular matrix and upregulating some osteogenic differentiation markers. bMSCs seeded on 20 nm ns-ZrOx show randomly oriented actin fibers, changes in nuclear morphology, and a reduction in mitochondrial transmembrane potential when compared to the cells cultured on flat zirconia (flat-ZrO(2)) substrates and glass coverslips used as controls. Additionally, an increase in ROS, known to promote osteogenesis, was detected after 24 h of culture on 20 nm ns-ZrOx. All the modifications induced by the ns-ZrOx surface are rescued after the first hours of culture. We propose that ns-ZrOx-induced cytoskeletal remodeling transmits signals generated by the extracellular environment to the nucleus, with the consequent modulation of the expression of genes controlling cell fate.
format Online
Article
Text
id pubmed-10005756
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-100057562023-03-11 Cluster-Assembled Zirconia Substrates Accelerate the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells Castiglioni, Sara Locatelli, Laura Cazzaniga, Alessandra Orecchio, Francesca Maria Santaniello, Tommaso Piazzoni, Claudio Bureau, Lionel Borghi, Francesca Milani, Paolo Maier, Jeanette A. Nanomaterials (Basel) Article Due to their high mechanical strength and good biocompatibility, nanostructured zirconia surfaces (ns-ZrOx) are widely used for bio-applications. Through supersonic cluster beam deposition, we produced ZrOx films with controllable roughness at the nanoscale, mimicking the morphological and topographical properties of the extracellular matrix. We show that a 20 nm ns-ZrOx surface accelerates the osteogenic differentiation of human bone marrow-derived MSCs (bMSCs) by increasing the deposition of calcium in the extracellular matrix and upregulating some osteogenic differentiation markers. bMSCs seeded on 20 nm ns-ZrOx show randomly oriented actin fibers, changes in nuclear morphology, and a reduction in mitochondrial transmembrane potential when compared to the cells cultured on flat zirconia (flat-ZrO(2)) substrates and glass coverslips used as controls. Additionally, an increase in ROS, known to promote osteogenesis, was detected after 24 h of culture on 20 nm ns-ZrOx. All the modifications induced by the ns-ZrOx surface are rescued after the first hours of culture. We propose that ns-ZrOx-induced cytoskeletal remodeling transmits signals generated by the extracellular environment to the nucleus, with the consequent modulation of the expression of genes controlling cell fate. MDPI 2023-02-22 /pmc/articles/PMC10005756/ /pubmed/36903679 http://dx.doi.org/10.3390/nano13050801 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Castiglioni, Sara
Locatelli, Laura
Cazzaniga, Alessandra
Orecchio, Francesca Maria
Santaniello, Tommaso
Piazzoni, Claudio
Bureau, Lionel
Borghi, Francesca
Milani, Paolo
Maier, Jeanette A.
Cluster-Assembled Zirconia Substrates Accelerate the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells
title Cluster-Assembled Zirconia Substrates Accelerate the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells
title_full Cluster-Assembled Zirconia Substrates Accelerate the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells
title_fullStr Cluster-Assembled Zirconia Substrates Accelerate the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells
title_full_unstemmed Cluster-Assembled Zirconia Substrates Accelerate the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells
title_short Cluster-Assembled Zirconia Substrates Accelerate the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells
title_sort cluster-assembled zirconia substrates accelerate the osteogenic differentiation of bone marrow mesenchymal stem cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10005756/
https://www.ncbi.nlm.nih.gov/pubmed/36903679
http://dx.doi.org/10.3390/nano13050801
work_keys_str_mv AT castiglionisara clusterassembledzirconiasubstratesacceleratetheosteogenicdifferentiationofbonemarrowmesenchymalstemcells
AT locatellilaura clusterassembledzirconiasubstratesacceleratetheosteogenicdifferentiationofbonemarrowmesenchymalstemcells
AT cazzanigaalessandra clusterassembledzirconiasubstratesacceleratetheosteogenicdifferentiationofbonemarrowmesenchymalstemcells
AT orecchiofrancescamaria clusterassembledzirconiasubstratesacceleratetheosteogenicdifferentiationofbonemarrowmesenchymalstemcells
AT santaniellotommaso clusterassembledzirconiasubstratesacceleratetheosteogenicdifferentiationofbonemarrowmesenchymalstemcells
AT piazzoniclaudio clusterassembledzirconiasubstratesacceleratetheosteogenicdifferentiationofbonemarrowmesenchymalstemcells
AT bureaulionel clusterassembledzirconiasubstratesacceleratetheosteogenicdifferentiationofbonemarrowmesenchymalstemcells
AT borghifrancesca clusterassembledzirconiasubstratesacceleratetheosteogenicdifferentiationofbonemarrowmesenchymalstemcells
AT milanipaolo clusterassembledzirconiasubstratesacceleratetheosteogenicdifferentiationofbonemarrowmesenchymalstemcells
AT maierjeanettea clusterassembledzirconiasubstratesacceleratetheosteogenicdifferentiationofbonemarrowmesenchymalstemcells