Cargando…

N-terminal truncated cardiac troponin I enhances Frank-Starling response by increasing myofilament sensitivity to resting tension

Cardiac troponin I (cTnI) of higher vertebrates has evolved with an N-terminal extension, of which deletion via restrictive proteolysis occurs as a compensatory adaptation in chronic heart failure to increase ventricular relaxation and stroke volume. Here, we demonstrate in a transgenic mouse model...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Han-Zhong, Huang, Xupei, Jin, Jian-Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10005897/
https://www.ncbi.nlm.nih.gov/pubmed/36880803
http://dx.doi.org/10.1085/jgp.202012821
Descripción
Sumario:Cardiac troponin I (cTnI) of higher vertebrates has evolved with an N-terminal extension, of which deletion via restrictive proteolysis occurs as a compensatory adaptation in chronic heart failure to increase ventricular relaxation and stroke volume. Here, we demonstrate in a transgenic mouse model expressing solely N-terminal truncated cTnI (cTnI-ND) in the heart with deletion of the endogenous cTnI gene. Functional studies using ex vivo working hearts showed an extended Frank-Starling response to preload with reduced left ventricular end diastolic pressure. The enhanced Frank-Starling response effectively increases systolic ventricular pressure development and stroke volume. A novel finding is that cTnI-ND increases left ventricular relaxation velocity and stroke volume without increasing the end diastolic volume. Consistently, the optimal resting sarcomere length (SL) for maximum force development in cTnI-ND cardiac muscle was not different from wild-type (WT) control. Despite the removal of the protein kinase A (PKA) phosphorylation sites in cTnI, β-adrenergic stimulation remains effective on augmenting the enhanced Frank-Starling response of cTnI-ND hearts. Force–pCa relationship studies using skinned preparations found that while cTnI-ND cardiac muscle shows a resting SL–resting tension relationship similar to WT control, cTnI-ND significantly increases myofibril Ca(2+) sensitivity to resting tension. The results demonstrate that restrictive N-terminal deletion of cTnI enhances Frank-Starling response by increasing myofilament sensitivity to resting tension rather than directly depending on SL. This novel function of cTnI regulation suggests a myofilament approach to utilizing Frank-Starling mechanism for the treatment of heart failure, especially diastolic failure where ventricular filling is limited.