Cargando…

Kibble–Zurek scaling due to environment temperature quench in the transverse field Ising model

The Kibble–Zurek mechanism describes defect production due to non-adiabatic passage through a critical point. Here we study its variant from ramping the environment temperature to a critical point. We find that the defect density scales as [Formula: see text] or [Formula: see text] for thermal or qu...

Descripción completa

Detalles Bibliográficos
Autores principales: Bácsi, Ádám, Dóra, Balázs
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006093/
https://www.ncbi.nlm.nih.gov/pubmed/36899093
http://dx.doi.org/10.1038/s41598-023-30840-4
Descripción
Sumario:The Kibble–Zurek mechanism describes defect production due to non-adiabatic passage through a critical point. Here we study its variant from ramping the environment temperature to a critical point. We find that the defect density scales as [Formula: see text] or [Formula: see text] for thermal or quantum critical points, respectively, in terms of the usual critical exponents and [Formula: see text] the speed of the drive. Both scalings describe reduced defect density compared to conventional Kibble–Zurek mechanism, which stems from the enhanced relaxation due to bath-system interaction. Ramping to the quantum critical point is investigated by studying the Lindblad equation for the transverse field Ising chain in the presence of thermalizing bath, with couplings to environment obeying detailed balance, confirming the predicted scaling. The von-Neumann or the system-bath entanglement entropy follows the same scaling. Our results are generalized to a large class of dissipative systems with power-law energy dependent bath spectral densities as well.