Cargando…
Deep learning for predicting epidermal growth factor receptor mutations of non-small cell lung cancer on PET/CT images
BACKGROUND: Predicting the mutation status of the epidermal growth factor receptor (EGFR) gene based on an integrated positron emission tomography/computed tomography (PET/CT) image of non-small cell lung cancer (NSCLC) is a noninvasive, low-cost method which is valuable for targeted therapy. Althou...
Autores principales: | Xiao, Zhenghui, Cai, Haihua, Wang, Yue, Cui, Ruixue, Huo, Li, Lee, Elaine Yuen-Phin, Liang, Ying, Li, Xiaomeng, Hu, Zhanli, Chen, Long, Zhang, Na |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006109/ https://www.ncbi.nlm.nih.gov/pubmed/36915325 http://dx.doi.org/10.21037/qims-22-760 |
Ejemplares similares
-
A deep learning model based on the attention mechanism for automatic segmentation of abdominal muscle and fat for body composition assessment
por: Shen, Hao, et al.
Publicado: (2023) -
Recent and current advances in PET/CT imaging in the field of predicting epidermal growth factor receptor mutations in non-small cell lung cancer
por: Hu, Na, et al.
Publicado: (2022) -
High-quality PET image synthesis from ultra-low-dose PET/MRI using bi-task deep learning
por: Sun, Hanyu, et al.
Publicado: (2022) -
Combination of (18)F-Fluorodeoxyglucose PET/CT Radiomics and Clinical Features for Predicting Epidermal Growth Factor Receptor Mutations in Lung Adenocarcinoma
por: Li, Shen, et al.
Publicado: (2022) -
A nomogram based on (18)F-fluorodeoxyglucose PET/CT and clinical features to predict epidermal growth factor receptor mutation status in patients with lung adenocarcinoma
por: Guo, Yue, et al.
Publicado: (2022)