Cargando…
A deep learning model based on the attention mechanism for automatic segmentation of abdominal muscle and fat for body composition assessment
BACKGROUND: Quantitative muscle and fat data obtained through body composition analysis are expected to be a new stable biomarker for the early and accurate prediction of treatment-related toxicity, treatment response, and prognosis in patients with lung cancer. The use of these biomarkers can enabl...
Autores principales: | Shen, Hao, He, Pin, Ren, Ya, Huang, Zhengyong, Li, Shuluan, Wang, Guoshuai, Cong, Minghua, Luo, Dehong, Shao, Dan, Lee, Elaine Yuen-Phin, Cui, Ruixue, Huo, Li, Qin, Jing, Liu, Jun, Hu, Zhanli, Liu, Zhou, Zhang, Na |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006126/ https://www.ncbi.nlm.nih.gov/pubmed/36915346 http://dx.doi.org/10.21037/qims-22-330 |
Ejemplares similares
-
Sarcopenia Was a Poor Prognostic Predictor for Patients With Advanced Lung Cancer Treated With Immune Checkpoint Inhibitors
por: Li, Shuluan, et al.
Publicado: (2022) -
Deep learning for predicting epidermal growth factor receptor mutations of non-small cell lung cancer on PET/CT images
por: Xiao, Zhenghui, et al.
Publicado: (2023) -
Prognostic Impact of Sarcopenia on Clinical Outcomes in Malignancies Treated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis
por: Li, Shuluan, et al.
Publicado: (2021) -
Automatic lumbar spinal MRI image segmentation with a multi-scale attention network
por: Li, Haixing, et al.
Publicado: (2021) -
Efficient attention-based deep encoder and decoder for automatic crack segmentation
por: Kang, Dong H, et al.
Publicado: (2021)