Cargando…
Machine learning for predicting accuracy of lung and liver tumor motion tracking using radiomic features
BACKGROUND: Internal tumor motion is commonly predicted using external respiratory signals. However, the internal/external correlation is complex and patient-specific. The purpose of this study was to develop various models based on the radiomic features of computed tomography (CT) images to predict...
Autores principales: | Li, Guangjun, Zhang, Xiangyu, Song, Xinyu, Duan, Lian, Wang, Guangyu, Xiao, Qing, Li, Jing, Liang, Lan, Bai, Long, Bai, Sen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006135/ https://www.ncbi.nlm.nih.gov/pubmed/36915317 http://dx.doi.org/10.21037/qims-22-621 |
Ejemplares similares
-
Machine Learning Radiomics Model for External and Internal Respiratory Motion Correlation Prediction in Lung Tumor
por: Zhang, Xiangyu, et al.
Publicado: (2022) -
Correlation of Optical Surface Respiratory Motion Signal and Internal Lung and Liver Tumor Motion: A Retrospective Single-Center Observational Study
por: Wang, Guangyu, et al.
Publicado: (2022) -
Accuracy of real-time respiratory motion tracking and time delay of gating radiotherapy based on optical surface imaging technique
por: Chen, Li, et al.
Publicado: (2020) -
Predictive value of magnetic resonance imaging radiomics-based machine learning for disease progression in patients with high-grade glioma
por: Li, Zhibin, et al.
Publicado: (2022) -
Real-time liver tracking algorithm based on LSTM and SVR networks for use in surface-guided radiation therapy
por: Wang, Guangyu, et al.
Publicado: (2021)