Cargando…
Radiation dose reduction using deep learning-based image reconstruction for a low-dose chest computed tomography protocol: a phantom study
BACKGROUND: The aim of this study was to compare the dose reduction potential and image quality of deep learning-based image reconstruction (DLIR) with those of filtered back-projection (FBP) and iterative reconstruction (IR) and to determine the clinically usable dose of DLIR for low-dose chest com...
Autores principales: | Jung, Yunsub, Hur, Jin, Han, Kyunghwa, Imai, Yasuhiro, Hong, Yoo Jin, Im, Dong Jin, Lee, Kye Ho, Desnoyers, Melissa, Thomsen, Brian, Shigemasa, Risa, Um, Kyounga, Jang, Kyungeun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006148/ https://www.ncbi.nlm.nih.gov/pubmed/36915339 http://dx.doi.org/10.21037/qims-22-618 |
Ejemplares similares
-
Dose optimization for digital chest radiography in phantom
por: Chukorn, N, et al.
Publicado: (2022) -
Development and Validation of a Deep Learning–Based Synthetic Bone-Suppressed Model for Pulmonary Nodule Detection in Chest Radiographs
por: Kim, Hwiyoung, et al.
Publicado: (2023) -
Distribution of the radiation dose in multislice computer tomography of the chest – phantom study
por: Gorycki, Tomasz, et al.
Publicado: (2014) -
75% radiation dose reduction using deep learning reconstruction on low-dose chest CT
por: Jo, Gyeong Deok, et al.
Publicado: (2023) -
Ultra-low-dose spectral-detector computed tomography for the accurate quantification of pulmonary nodules: an anthropomorphic chest phantom study
por: Zhou, Xiuxiu, et al.
Publicado: (2023)