Cargando…
The value of using a deep learning image reconstruction algorithm of thinner slice thickness to balance the image noise and spatial resolution in low-dose abdominal CT
BACKGROUND: Traditional reconstruction techniques have certain limitations in balancing image quality and reducing radiation dose. The deep learning image reconstruction (DLIR) algorithm opens the door to a new era of medical image reconstruction. The purpose of the study was to evaluate the DLIR im...
Autores principales: | Wang, Huan, Li, Xinyu, Wang, Tianze, Li, Jianying, Sun, Tianze, Chen, Lihong, Cheng, Yannan, Jia, Xiaoqian, Niu, Xinyi, Guo, Jianxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006151/ https://www.ncbi.nlm.nih.gov/pubmed/36915333 http://dx.doi.org/10.21037/qims-22-353 |
Ejemplares similares
-
Image quality improvement in low‐dose chest CT with deep learning image reconstruction
por: Tian, Qian, et al.
Publicado: (2022) -
Development and validation of a fully automated system using deep learning for opportunistic osteoporosis screening using low-dose computed tomography scans
por: Niu, Xinyi, et al.
Publicado: (2023) -
High Rate of False Negative Diagnosis of Silent Patent Ductus Arteriosus on the Chest CT with 3 mm Slice-Thickness, Suggesting the Need for Analysis with Thinner Slice Thickness
por: Lee, Dongjun, et al.
Publicado: (2021) -
Thinner tubes
por: Wells, William A.
Publicado: (2005) -
Thinner femoral cortical thickness in patients with destructive rheumatoid arthritis of the knee
por: Kakutani, Rika, et al.
Publicado: (2023)