Cargando…

Metabolomic study combined with the low-level light therapy of Chinese acupuncture points and combined oral contraceptives in treatment of primary dysmenorrhea: A prospective, multicenter, randomized controlled study

OBJECTIVE: To compare the changes of metabolites between Low-level light therapy (LLLT) and combined oral contraceptive (COC) after treatment of primary dysmenorrhea (PD), and to compare and analyze the biological and biochemical effects of the two treatments by analyzing the differences in metaboli...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hanbi, Zhu, Shiyang, Ding, Xuesong, Deng, Yan, Ma, Xiao, Gan, Jingwen, Wang, Yanfang, Sun, Aijun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006448/
https://www.ncbi.nlm.nih.gov/pubmed/36915513
http://dx.doi.org/10.1016/j.heliyon.2023.e13821
Descripción
Sumario:OBJECTIVE: To compare the changes of metabolites between Low-level light therapy (LLLT) and combined oral contraceptive (COC) after treatment of primary dysmenorrhea (PD), and to compare and analyze the biological and biochemical effects of the two treatments by analyzing the differences in metabolite profiles. METHODS: A multicenter, double-blind, prospective, parallel, randomized controlled study was conducted on 69 women aged 16–35 years old with PD who were randomly divided into COC treatment group or LLLT treatment group. Low-level light therapy with light-emitting diodes (LED) was applied on two acupoints named “Guanyuan” (CV4) and “Qihai” (CV6). After 12 weeks of treatment intervention, blood samples were collected before and after treatment for metabolomic analysis. We used UPLC-MS/MS analysis to compare the differences in metabolite changes between LLLT and COC before and after treatment. RESULTS: 76 differential metabolites were detected in the LLLT group, and 92 differential metabolites were detected in the COC group, which were up-regulated or down-regulated (p < 0.001). Prostaglandin D2 (PG D2) was down-regulated and biliverdin was up-regulated after LLLT treatment, 4a-Hydroxytetrahydrobiopterin, Prostaglandin D2, 5-Hydroxy-l-tryptophan, Cholic acid were down-regulated and cortisol was up-regulated after COC treatment, and the differences were statistically significant. Cortisol and testosterone glucuronide in LLLT group were significantly lower than those in COC group. The metabolic pathways affected were glycerophospholipid metabolism, linoleic acid metabolism and arachidonic acid metabolism in the LLLT group, and glycerophospholipid metabolism, folate biosynthesis, arachidonic-acid-metabolism, and tryptophan metabolism in the COC group. The differential metabolic pathway were linoleic acid metabolism, steroid hormone biosynthesis, and alpha-Linolenic acid metabolism after the comparison of LLLT with COC. CONCLUSION: LLLT and COC might relieve dysmenorrhea by down-regulating PGD2, and LLLT might also relieve dysmenorrhea by up-regulating biliverdin. The level of cortisol and testosterone glucuronide after LLLT treatment was lower than that after COC treatment, which might lead to the difference in the clinical efficacy of the two treatments for dysmenorrhea.