Cargando…
Multitask computation through dynamics in recurrent spiking neural networks
In this work, inspired by cognitive neuroscience experiments, we propose recurrent spiking neural networks trained to perform multiple target tasks. These models are designed by considering neurocognitive activity as computational processes through dynamics. Trained by input–output examples, these s...
Autores principales: | Pugavko, Mechislav M., Maslennikov, Oleg V., Nekorkin, Vladimir I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006454/ https://www.ncbi.nlm.nih.gov/pubmed/36899052 http://dx.doi.org/10.1038/s41598-023-31110-z |
Ejemplares similares
-
Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons
por: Buesing, Lars, et al.
Publicado: (2011) -
Parsimonious Optimization of Multitask Neural Network Hyperparameters
por: Valsecchi, Cecile, et al.
Publicado: (2021) -
Polymer Informatics
at Scale with Multitask Graph
Neural Networks
por: Gurnani, Rishi, et al.
Publicado: (2023) -
Multitask Attention-Based Neural Network for Intraoperative Hypotension Prediction
por: Shi, Meng, et al.
Publicado: (2023) -
Low-Rank Deep Convolutional Neural Network for Multitask Learning
por: Su, Fang, et al.
Publicado: (2019)