Cargando…
SLRProp: A Back-Propagation Variant of Sparse Low Rank Method for DNNs Reduction
Application of deep neural networks (DNN) in edge computing has emerged as a consequence of the need of real time and distributed response of different devices in a large number of scenarios. To this end, shredding these original structures is urgent due to the high number of parameters needed to re...
Autores principales: | Garmendia-Orbegozo, Asier, Nuñez-Gonzalez, Jose David, Anton, Miguel Angel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006865/ https://www.ncbi.nlm.nih.gov/pubmed/36904922 http://dx.doi.org/10.3390/s23052718 |
Ejemplares similares
-
Decoding Physics Information in DNNs
por: Cheng, Taoli
Publicado: (2019) -
Fast Calorimeter Simulation in ATLAS with DNNs
por: Golling, Tobias, et al.
Publicado: (2020) -
Convergence Behavior of DNNs with Mutual-Information-Based Regularization
por: Jónsson, Hlynur, et al.
Publicado: (2020) -
Directly Matching an MMIC Amplifier Integrated with MIMO Antenna through DNNs for Future Networks
por: Kouhalvandi, Lida
Publicado: (2022) -
Epi-DNNs: Epidemiological priors informed deep neural networks for modeling COVID-19 dynamics
por: Ning, Xiao, et al.
Publicado: (2023)