Cargando…
Dynamic Spectrum Sharing Based on Deep Reinforcement Learning in Mobile Communication Systems
The rapid development of mobile communication services in recent years has resulted in a scarcity of spectrum resources. This paper addresses the problem of multi-dimensional resource allocation in cognitive radio systems. Deep reinforcement learning (DRL) combines deep learning and reinforcement le...
Autores principales: | Liu, Sizhuang, Pan, Changyong, Zhang, Chao, Yang, Fang, Song, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006914/ https://www.ncbi.nlm.nih.gov/pubmed/36904826 http://dx.doi.org/10.3390/s23052622 |
Ejemplares similares
-
Learning Mobile Manipulation through Deep Reinforcement Learning
por: Wang, Cong, et al.
Publicado: (2020) -
Application of deep neural network and deep reinforcement learning in wireless communication
por: Li, Ming, et al.
Publicado: (2020) -
Attention-Shared Multi-Agent Actor–Critic-Based Deep Reinforcement Learning Approach for Mobile Charging Dynamic Scheduling in Wireless Rechargeable Sensor Networks
por: Jiang, Chengpeng, et al.
Publicado: (2022) -
Performance evaluation of cooperative mobile communication security using reinforcement learning
por: Lema, Gebrehiwet Gebrekrstos, et al.
Publicado: (2021) -
Deep Reinforcement Learning for Indoor Mobile Robot Path Planning
por: Gao, Junli, et al.
Publicado: (2020)