Cargando…
A Bio-Inspired Spiking Neural Network with Few-Shot Class-Incremental Learning for Gas Recognition
The sensitivity and selectivity profiles of gas sensors are always changed by sensor drifting, sensor aging, and the surroundings (e.g., temperature and humidity changes), which lead to a serious decline in gas recognition accuracy or even invalidation. To address this issue, the practical solution...
Autores principales: | Huo, Dexuan, Zhang, Jilin, Dai, Xinyu, Zhang, Pingping, Zhang, Shumin, Yang, Xiao, Wang, Jiachuang, Liu, Mengwei, Sun, Xuhui, Chen, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006916/ https://www.ncbi.nlm.nih.gov/pubmed/36904636 http://dx.doi.org/10.3390/s23052433 |
Ejemplares similares
-
Few Shot Class Incremental Learning via Efficient Prototype Replay and Calibration
por: Zhang, Wei, et al.
Publicado: (2023) -
Heterogeneous Ensemble-Based Spike-Driven Few-Shot Online Learning
por: Yang, Shuangming, et al.
Publicado: (2022) -
FewJoint: few-shot learning for joint dialogue understanding
por: Hou, Yutai, et al.
Publicado: (2022) -
Knowledge-enhanced prototypical network with class cluster loss for few-shot relation classification
por: Liu, Tao, et al.
Publicado: (2023) -
Bio-Inspired Design of Superconducting Spiking Neuron and Synapse
por: Schegolev, Andrey E., et al.
Publicado: (2023)