Cargando…
Online SFRA for Reliability of Power Systems: Characterization of a Batch of Healthy and Damaged Induction Motors for Predictive Maintenance
Asynchronous motors represent a large percentage of motors used in the electrical industry. Suitable predictive maintenance techniques are strongly required when these motors are critical in their operations. Continuous non-invasive monitoring techniques can be investigated to avoid the disconnectio...
Autores principales: | Bucci, Giovanni, Ciancetta, Fabrizio, Fioravanti, Andrea, Fiorucci, Edoardo, Mari, Simone, Silvestri, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006942/ https://www.ncbi.nlm.nih.gov/pubmed/36904793 http://dx.doi.org/10.3390/s23052583 |
Ejemplares similares
-
A New NILM System Based on the SFRA Technique and Machine Learning
por: Mari, Simone, et al.
Publicado: (2023) -
A Low-Cost IoT Sensors Network for Monitoring Three-Phase Induction Motor Mechanical Power Adopting an Indirect Measuring Method
por: Ciancetta, Fabrizio, et al.
Publicado: (2021) -
Online automatic tuning and control for fed-batch cultivation
por: Soons, Zita I. T. A., et al.
Publicado: (2007) -
Highly Reliable Multicomponent MEMS Sensor for Predictive Maintenance Management of Rolling Bearings
por: Landi, Elia, et al.
Publicado: (2023) -
Reliability-centered maintenance /
por: Moubray, John
Publicado: (1997)