Cargando…
Pre-Trained Joint Model for Intent Classification and Slot Filling with Semantic Feature Fusion
The comprehension of spoken language is a crucial aspect of dialogue systems, encompassing two fundamental tasks: intent classification and slot filling. Currently, the joint modeling approach for these two tasks has emerged as the dominant method in spoken language understanding modeling. However,...
Autores principales: | Chen, Yan, Luo, Zhenghang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006958/ https://www.ncbi.nlm.nih.gov/pubmed/36905052 http://dx.doi.org/10.3390/s23052848 |
Ejemplares similares
-
Intent Detection and Slot Filling with Capsule Net Architectures for a Romanian Home Assistant
por: Stoica, Anda, et al.
Publicado: (2021) -
Time-Domain Joint Training Strategies of Speech Enhancement and Intent Classification Neural Models
por: Ali, Mohamed Nabih, et al.
Publicado: (2022) -
Crop classification in high-resolution remote sensing images based on multi-scale feature fusion semantic segmentation model
por: Lu, Tingyu, et al.
Publicado: (2023) -
Geometric Features-Based Parking Slot Detection
por: Li, Qian, et al.
Publicado: (2018) -
A Feature Fusion Method with Guided Training for Classification Tasks
por: Zhang, Taohong, et al.
Publicado: (2021)