Cargando…
Human Recognition Using Deep Neural Networks and Spatial Patterns of SSVEP Signals
Brain biometrics have received increasing attention from the scientific community due to their unique properties compared to traditional biometric methods. Many studies have shown that EEG features are distinct across individuals. In this study, we propose a novel approach by considering spatial pat...
Autor principal: | Oikonomou, Vangelis P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006983/ https://www.ncbi.nlm.nih.gov/pubmed/36904629 http://dx.doi.org/10.3390/s23052425 |
Ejemplares similares
-
An Adaptive Task-Related Component Analysis Method for SSVEP Recognition
por: Oikonomou, Vangelis P.
Publicado: (2022) -
Physical connections between different SSVEP neural networks
por: Wu, Zhenghua
Publicado: (2016) -
GDNet-EEG: An attention-aware deep neural network based on group depth-wise convolution for SSVEP stimulation frequency recognition
por: Wan, Zhijiang, et al.
Publicado: (2023) -
A SSVEP Stimuli Encoding Method Using Trinary Frequency-Shift Keying Encoded SSVEP (TFSK-SSVEP)
por: Zhao, Xing, et al.
Publicado: (2017) -
Studying modulation on simultaneously activated SSVEP neural networks by a cognitive task
por: Wu, Zhenghua
Publicado: (2014)