Cargando…
Analysis of Training Deep Learning Models for PCB Defect Detection
Recently, many companies have introduced automated defect detection methods for defect-free PCB manufacturing. In particular, deep learning-based image understanding methods are very widely used. In this study, we present an analysis of training deep learning models to perform PCB defect detection s...
Autores principales: | Park, Joon-Hyung, Kim, Yeong-Seok, Seo, Hwi, Cho, Yeong-Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006999/ https://www.ncbi.nlm.nih.gov/pubmed/36904970 http://dx.doi.org/10.3390/s23052766 |
Ejemplares similares
-
Detection of Abnormal Changes on the Dorsal Tongue Surface Using Deep Learning
por: Song, Ho-Jun, et al.
Publicado: (2023) -
PCB Defect Detection via Local Detail and Global Dependency Information
por: Feng, Bixian, et al.
Publicado: (2023) -
Cost-Sensitive Siamese Network for PCB Defect Classification
por: Miao, Yilin, et al.
Publicado: (2021) -
Semi-Supervised Defect Detection Method with Data-Expanding Strategy for PCB Quality Inspection
por: Wan, Yusen, et al.
Publicado: (2022) -
Deep Learning‐Assisted Quantification of Atomic Dopants and Defects in 2D Materials
por: Yang, Sang‐Hyeok, et al.
Publicado: (2021)