Cargando…

Conjugated Microporous Polymers Based on Ferrocene Units as Highly Efficient Electrodes for Energy Storage

This work describes the facile designing of three conjugated microporous polymers incorporated based on the ferrocene (FC) unit with 1,4-bis(4,6-diamino-s-triazin-2-yl)benzene (PDAT), tris(4-aminophenyl)amine (TPA-NH(2)), and tetrakis(4-aminophenyl)ethane (TPE-NH(2)) to form PDAT-FC, TPA-FC, and TPE...

Descripción completa

Detalles Bibliográficos
Autores principales: Samy, Maha Mohamed, Mohamed, Mohamed Gamal, Kuo, Shiao-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007016/
https://www.ncbi.nlm.nih.gov/pubmed/36904335
http://dx.doi.org/10.3390/polym15051095
Descripción
Sumario:This work describes the facile designing of three conjugated microporous polymers incorporated based on the ferrocene (FC) unit with 1,4-bis(4,6-diamino-s-triazin-2-yl)benzene (PDAT), tris(4-aminophenyl)amine (TPA-NH(2)), and tetrakis(4-aminophenyl)ethane (TPE-NH(2)) to form PDAT-FC, TPA-FC, and TPE-FC CMPs from Schiff base reaction of 1,1′-diacetylferrocene monomer with these three aryl amines, respectively, for efficient supercapacitor electrodes. PDAT-FC and TPA-FC CMPs samples featured higher surface area values of approximately 502 and 701 m(2) g(−1), in addition to their possession of both micropores and mesopores. In particular, the TPA-FC CMP electrode achieved more extended discharge time compared with the other two FC CMPs, demonstrating good capacitive performance with a specific capacitance of 129 F g(−1) and capacitance retention value of 96% next 5000 cycles. This feature of TPA-FC CMP is attributed to the presence of redox-active triphenylamine and ferrocene units in its backbone, in addition to a high surface area and good porosity that facilitates the redox process and provides rapid kinetics.