Cargando…
Anomaly Detection in Biological Early Warning Systems Using Unsupervised Machine Learning
The use of bivalve mollusks as bioindicators in automated monitoring systems can provide real-time detection of emergency situations associated with the pollution of aquatic environments. The behavioral reactions of Unio pictorum (Linnaeus, 1758) were employed in the development of a comprehensive a...
Autores principales: | Grekov, Aleksandr N., Kabanov, Aleksey A., Vyshkvarkova, Elena V., Trusevich, Valeriy V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007031/ https://www.ncbi.nlm.nih.gov/pubmed/36904891 http://dx.doi.org/10.3390/s23052687 |
Ejemplares similares
-
Search for new physics using unsupervised machine learning for anomaly detection with ATLAS
por: Zhang, Rui
Publicado: (2023) -
Variant-driven early warning via unsupervised machine learning analysis of spike protein mutations for COVID-19
por: de Hoffer, Adele, et al.
Publicado: (2022) -
Unsupervised Deep Anomaly Detection in Chest Radiographs
por: Nakao, Takahiro, et al.
Publicado: (2021) -
Unsupervised Anomaly Detection Applied to Φ-OTDR
por: Almudévar, Antonio, et al.
Publicado: (2022) -
Unsupervised machine learning for detection of faulty beam position monitors
por: Fol, Elena, et al.
Publicado: (2019)