Cargando…
COVID-Net USPro: An Explainable Few-Shot Deep Prototypical Network for COVID-19 Screening Using Point-of-Care Ultrasound
As the Coronavirus Disease 2019 (COVID-19) continues to impact many aspects of life and the global healthcare systems, the adoption of rapid and effective screening methods to prevent the further spread of the virus and lessen the burden on healthcare providers is a necessity. As a cheap and widely...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007046/ https://www.ncbi.nlm.nih.gov/pubmed/36904833 http://dx.doi.org/10.3390/s23052621 |
_version_ | 1784905421650132992 |
---|---|
author | Song, Jessy Ebadi, Ashkan Florea, Adrian Xi, Pengcheng Tremblay, Stéphane Wong, Alexander |
author_facet | Song, Jessy Ebadi, Ashkan Florea, Adrian Xi, Pengcheng Tremblay, Stéphane Wong, Alexander |
author_sort | Song, Jessy |
collection | PubMed |
description | As the Coronavirus Disease 2019 (COVID-19) continues to impact many aspects of life and the global healthcare systems, the adoption of rapid and effective screening methods to prevent the further spread of the virus and lessen the burden on healthcare providers is a necessity. As a cheap and widely accessible medical image modality, point-of-care ultrasound (POCUS) imaging allows radiologists to identify symptoms and assess severity through visual inspection of the chest ultrasound images. Combined with the recent advancements in computer science, applications of deep learning techniques in medical image analysis have shown promising results, demonstrating that artificial intelligence-based solutions can accelerate the diagnosis of COVID-19 and lower the burden on healthcare professionals. However, the lack of large, well annotated datasets poses a challenge in developing effective deep neural networks, especially in the case of rare diseases and new pandemics. To address this issue, we present COVID-Net USPro, an explainable few-shot deep prototypical network that is designed to detect COVID-19 cases from very few ultrasound images. Through intensive quantitative and qualitative assessments, the network not only demonstrates high performance in identifying COVID-19 positive cases, using an explainability component, but it is also shown that the network makes decisions based on the actual representative patterns of the disease. Specifically, COVID-Net USPro achieves 99.55% overall accuracy, 99.93% recall, and 99.83% precision for COVID-19-positive cases when trained with only five shots. In addition to the quantitative performance assessment, our contributing clinician with extensive experience in POCUS interpretation verified the analytic pipeline and results, ensuring that the network’s decisions are based on clinically relevant image patterns integral to COVID-19 diagnosis. We believe that network explainability and clinical validation are integral components for the successful adoption of deep learning in the medical field. As part of the COVID-Net initiative, and to promote reproducibility and foster further innovation, the network is open-sourced and available to the public. |
format | Online Article Text |
id | pubmed-10007046 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100070462023-03-12 COVID-Net USPro: An Explainable Few-Shot Deep Prototypical Network for COVID-19 Screening Using Point-of-Care Ultrasound Song, Jessy Ebadi, Ashkan Florea, Adrian Xi, Pengcheng Tremblay, Stéphane Wong, Alexander Sensors (Basel) Article As the Coronavirus Disease 2019 (COVID-19) continues to impact many aspects of life and the global healthcare systems, the adoption of rapid and effective screening methods to prevent the further spread of the virus and lessen the burden on healthcare providers is a necessity. As a cheap and widely accessible medical image modality, point-of-care ultrasound (POCUS) imaging allows radiologists to identify symptoms and assess severity through visual inspection of the chest ultrasound images. Combined with the recent advancements in computer science, applications of deep learning techniques in medical image analysis have shown promising results, demonstrating that artificial intelligence-based solutions can accelerate the diagnosis of COVID-19 and lower the burden on healthcare professionals. However, the lack of large, well annotated datasets poses a challenge in developing effective deep neural networks, especially in the case of rare diseases and new pandemics. To address this issue, we present COVID-Net USPro, an explainable few-shot deep prototypical network that is designed to detect COVID-19 cases from very few ultrasound images. Through intensive quantitative and qualitative assessments, the network not only demonstrates high performance in identifying COVID-19 positive cases, using an explainability component, but it is also shown that the network makes decisions based on the actual representative patterns of the disease. Specifically, COVID-Net USPro achieves 99.55% overall accuracy, 99.93% recall, and 99.83% precision for COVID-19-positive cases when trained with only five shots. In addition to the quantitative performance assessment, our contributing clinician with extensive experience in POCUS interpretation verified the analytic pipeline and results, ensuring that the network’s decisions are based on clinically relevant image patterns integral to COVID-19 diagnosis. We believe that network explainability and clinical validation are integral components for the successful adoption of deep learning in the medical field. As part of the COVID-Net initiative, and to promote reproducibility and foster further innovation, the network is open-sourced and available to the public. MDPI 2023-02-27 /pmc/articles/PMC10007046/ /pubmed/36904833 http://dx.doi.org/10.3390/s23052621 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Song, Jessy Ebadi, Ashkan Florea, Adrian Xi, Pengcheng Tremblay, Stéphane Wong, Alexander COVID-Net USPro: An Explainable Few-Shot Deep Prototypical Network for COVID-19 Screening Using Point-of-Care Ultrasound |
title | COVID-Net USPro: An Explainable Few-Shot Deep Prototypical Network for COVID-19 Screening Using Point-of-Care Ultrasound |
title_full | COVID-Net USPro: An Explainable Few-Shot Deep Prototypical Network for COVID-19 Screening Using Point-of-Care Ultrasound |
title_fullStr | COVID-Net USPro: An Explainable Few-Shot Deep Prototypical Network for COVID-19 Screening Using Point-of-Care Ultrasound |
title_full_unstemmed | COVID-Net USPro: An Explainable Few-Shot Deep Prototypical Network for COVID-19 Screening Using Point-of-Care Ultrasound |
title_short | COVID-Net USPro: An Explainable Few-Shot Deep Prototypical Network for COVID-19 Screening Using Point-of-Care Ultrasound |
title_sort | covid-net uspro: an explainable few-shot deep prototypical network for covid-19 screening using point-of-care ultrasound |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007046/ https://www.ncbi.nlm.nih.gov/pubmed/36904833 http://dx.doi.org/10.3390/s23052621 |
work_keys_str_mv | AT songjessy covidnetusproanexplainablefewshotdeepprototypicalnetworkforcovid19screeningusingpointofcareultrasound AT ebadiashkan covidnetusproanexplainablefewshotdeepprototypicalnetworkforcovid19screeningusingpointofcareultrasound AT floreaadrian covidnetusproanexplainablefewshotdeepprototypicalnetworkforcovid19screeningusingpointofcareultrasound AT xipengcheng covidnetusproanexplainablefewshotdeepprototypicalnetworkforcovid19screeningusingpointofcareultrasound AT tremblaystephane covidnetusproanexplainablefewshotdeepprototypicalnetworkforcovid19screeningusingpointofcareultrasound AT wongalexander covidnetusproanexplainablefewshotdeepprototypicalnetworkforcovid19screeningusingpointofcareultrasound |