Cargando…
3D Off-Grid Localization for Adjacent Cavitation Noise Sources Using Bayesian Inference
The propeller tip vortex cavitation (TVC) localization problem involves the separation of noise sources in proximity. This work describes a sparse localization method for off-grid cavitations to estimates their precise locations while keeping reasonable computational efficiency. It adopts two differ...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007084/ https://www.ncbi.nlm.nih.gov/pubmed/36904831 http://dx.doi.org/10.3390/s23052628 |
Sumario: | The propeller tip vortex cavitation (TVC) localization problem involves the separation of noise sources in proximity. This work describes a sparse localization method for off-grid cavitations to estimates their precise locations while keeping reasonable computational efficiency. It adopts two different grid (pairwise off-grid) sets with a moderate grid interval and provides redundant representations for adjacent noise sources. To estimate the position of the off-grid cavitations, a block-sparse Bayesian learning-based method is adopted for the pairwise off-grid scheme (pairwise off-grid BSBL), which iteratively updates the grid points using Bayesian inference. Subsequently, simulation and experimental results demonstrate that the proposed method achieves the separation of adjacent off-grid cavitations with reduced computational cost, while the other scheme suffers from a heavy computational burden; for the separation of adjacent off-grid cavitations, the pairwise off-grid BSBL took significantly less time (29 s) compared with the time taken by the conventional off-grid BSBL (2923 s). |
---|